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FOREWORD 

In  spite of the large number of computing systems which have been de- 
signed and are in use today there is no clear-cut optimum approach to a gen- 
eral purpose computing system. Rather, i t  would seem, we are just begin- 
ning to  explore the really basic variations from the one address sequential 
machines that launched the digital computing industry. 

Early in digital computer history circuit technology advanced so rapidly 
that giant strides were made in equipment performance with little variation 
in design structure. The very presence of this rapid technological advance 
discouraged exploration of system structure. Electrical circuits tend to in- 
teract with system organization, and a good system design could become 
obsolete in a short period of time because the associated electrical circuits 
had been passed by. 

In the early 1960’s electrical circuit performance began to stabilize with 
the advent of integrated circuit technology. Circuit speed improvement 
continued but at a somewhat lower rate. In addtion the integrated circuit 
offered the alternative of using larger quantities of mass produced configura- 
tions for the same cost as might be obtained by brute force efforts a t  speed in 
serial processors. 

System design then began to diverge into parallel structures. This 
book describes one of the early machines attempting to explore parallehsm 
in electrical structure without abandoning the serial structure of the com- 
puter programs. Yet to be explored are parallel machines with wholly new 
programming philosophies in which serial execution of a single program is 
abandoned. 

A book describing the characteristics of a modern large-scale digital 
computer is a challenging undertaking. There is more detail information to  
be presented than is possible in a single volume. An overview of the system 
without being specific is generally too vague to convey the important char- 
acteristics that are of red  interest. The author in this book selects special 
areas for detail treatment where those areas are unique to the machine de- 
scribed. These are interconnected with a general description of the system 
as a whole. 

The reader can rest assured that the material presented is accurate and 
from the best authority as Mr. Thornton was personally responsible for most 
of the detailed design of the Control Data model 6600 system. 

SEYMOUR R. CRAY 
Vice President and General Manager 

Chippewa Laboratory 



DESIGN OF A 
COMP UTtR 

T t i t  CONTROL DATA 

6600 



In the editorial series of 

MALCOLM C. HARRISON 
Courant Institute of Mathematical Sciences 
New York University 

DESIGN O F  A 
COMPUTER 

THE CONTROL DATA 

6600 
J. E. THORNTON 

Vice Presided 

Advanced Design Laboratory 
Control Data Corporation 

SCOTT. FORESMAN AND COMPANY 



TABLE OF CONTENTS 

I. INTRODUCTION 

A. Justification for Large Computers 1 

B. BuildingBlocks 4 

C. The Approach 5 

11. ORGANIZATION OF THE 6600 

A. General 9 

B. Peripheral Subsystem 10 

C. Central Processor-CPU 12 

D. Central Storage 15 

E. Extended Core Storage 17 

Ill. BASIC CIRCUIT PROPERTIES 

A. The Silicon Transistor 19 

B. DCTL Logic Circuits 21 

C. LogicSymbols 24 

D. Transmission Lines 28 

E. Packaging 32 

IV. CENTRAL STORAGE SYSTEM 

A. Storage Module 37 

B. Theory of Interleaved Storage 44 

C. Stunt Box 47 

D. Storage Bus System 51 

E. Extended Core Storage 53 

F. ECS Coupler and Controller 55 

1 

9 

19 

37 



V. CENTRAL PROCESSOR FUNCTIONAL UNITS 

A. 

B. 

C. 

D. 

E. 

F. 

G. 
H. 

I. 

J .  

Boolean Unit 59 

Fixed Add Unit 63 

DataTrunks 69 

Shift Unit 71 

Add Unit 77 

Multiply Unit 88 

Divide Unit 101 

Increment Unit 105 

Branch Unit 11 1 

ECS Coupler-Controller 114 

VI. CENTRAL PROCESSOR CONTROL 

A. Exchange Jump 117 

B. Instruction Fetch 120 

C. Instruction Issue 123 

D. Scoreboard 125 

E. Register Entry/Exit Control 134 

F. Summary 137 

VII. PERIPHERAL SUBSYSTEM 

A. Peripheral Processors 141 

B. Dead Start 154 

C. Disk Storage 157 

VIII. SYSTEMS OPERATION 

A. Files 163 

B. Tables 165 

c. Circular Buffer for 1/0 166 

D. Job Processing 167 

57 

117 

141 

163 

E. System Monitor MTR 168 

F. Control Points 169 

G .  Summary 171 

APPENDIX 

INDEX 

173 

177 



INTRODUCTION 

Reduction to practice is a desirable and necessary test of any theory. 
The growing body of theory and understanding about digital computation is 
no exception. Particularly evident in recent years are attempts to  define 
new organization or architecture of digital computers which offer significant 
performance improvement. Of interest are theories involving simultaneous 
or concurrent computation, sometimes called functional parallelism, sub- 
function concurrency, multiprocessing, and so on. 

This book is offered as a “case study” of a major digital computer which 
has reduced to practice a number of interesting theories involving parallelism 
and concurrency. 

It is assumed that the reader has been exposed to some introductory 
study in digital computation and number theory. No attempt is made in the 
book to establish any all-encompassing theory. While this may be dissatis- 
fying to some, the author feels this is best left to other comparative studies 
and theoretical works. 

Following sections of this chapter are included to provide the back- 
ground pertinent to the discussion of the 6600 Computer. 

A. JUSTIFICATION FOR LARGE COMPUTERS 

The motivation for the computer came at least partly from the need to 
solve systems of linear and nonlinear simultaneous algebraic equations. 
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Such systems of equations may occur in the applied fields of physics, statis- 
tics, and industrial technology. 

Solution of systems of linear algebraic equations is fundamental to the 
following efforts. 

%lution of vibrational problems. 

Electrical circuit analysis and thermal analysis. 
Approximate solution of problems of elasticity. . Approximate solution to theories of mechanics and astronomy. 

Analysis of elastic structures. 

Approximate solution to problems of quantum mechanics. 

Particularly for the approximate solutions above, the number of un- 
knowns and therefore the number of simultaneous equations increases as the 
need for closer approximation increases. It is a rather straightforward exer- 
cise to determine how long it would take a man to solve a small system of 
equations. One can also determine the time and storage space needed by a 
computer. It is easy to see the limitation on a man in terms of attention span 
and susceptibility of error. The computer has, however, a somewhat differ- 
ent situation. 

Assuming the time to completion goes as the cube of the number of 
unknowns, one can appreciate that time can be a limit. As more unknowns 
are needed to accomplish a more complete solution or a closer approximation, 
much more solution time is needed. All computers have a fhite maximum 
period of time between failures. If the solution time nears or exceeds this 
period, additional precautions must be taken amounting to  extra storage and 
extra time. Of course, the time taken per solution must also be reasonably 
compatible with the time schedule of the person requesting it! 

W. J. Worlton, of the Los Alamos Scientific Laboratory, describes it as 
follows. “If all problems of interest to science were arranged on a scale of 
increasing complexity and those problems marked off that have been or can 
be solved with present equipment, it would be obvious that the unsolved 
problems are largely in the domain of higher complexity.”l Mr. Worlton 
relates complexity to that  “of the physical devices being modeled on the com- 
puter, the need for more detailed information, the increasing complexity of 
the mathematical models, and the growing complexity of computer hardware 
and software.”2 One- and two-dimensional neutronics codes and three- 
dimensional magneto-hydronamics codes require many more points of solu- 
tion, he points out. 

Also commenting on this situation, S. Fernbach of the Lawrence Radia- 
tion Laboratory says, “These problems (in mathematical physics) are for 
the most part describable in non-linear partial differential equations; they 
represent primarily the properties of materials under high pressures and tem- 

‘W. G .  Worlton, “A Look Into the Future,” Nuclear News, April 1968, page 42, 
21bid. 

peratures as well as the transport of nuclear particles. Because of the com- 
plex geometry and multidimensional nature of these problems, the time 
consumed on any one run can be many hours, even on the most advanced 
computer. Furthermore, many runs may be necessary to optimize the pa- 
rameters involved in a design ~ t u d y . ” ~  

hh. Worlton further comments, ‘‘Computational physics has matured 
to a discipline of equal importance to theoretical and experimental physics, 
and the future pace of progress in research depends on using the advantages 
of each where appr~priate.”~ 

A further justification for the large computer is the relative economy of 
problem solution on smaller problems. There is a considerable body of evi- 
dence to support the advantage of a centralized large computer over many 
independent small computers. The evidence takes the form mostly of 
economy; that is, the large computer completes more jobs per dollar. A num- 
ber of problems or jobs which do not require all the resources of the large 
computer may be allowed to share these resources. This multi-programming 
is a significant factor in the justification of the large computer. The question 
of efficiency in this sharing of resources is important to the ultimate economy. 
Here too, the amount of storage and the nature of the storage hierarchy, if 
any, plays an important part in the efficiency calculation. A major problem 
area is found in simply getting the problem to the computer and the results 
back. While the initial history of time-sharing of the computer has been 
unrewarding, and occasionally downright ridiculous, the evidence for i t  is 
too strong. Terminals connected to a large computer will unquestionably 
allow work to be done, which otherwise would remain untouched. Resource 
sharing by multi-programming is fundamental for both batch processing 
and on-line processing a t  a terminal. These terminals bring into use a num- 
ber of grossly different strategies of computation and storage. Much of the 
time sharing controversy of the past few years reflects a lack of understand- 
ing about these new strategies. Methods of “paging” and “segmentation” 
are suggested. These have to do with schemes of defining and locating blocks 
of data. In this regard, Messrs. Harrison and Schwartz of Courant Institute 
indicated the following about their time-sharing system, called SHARER, 
implemented on the 6600, “The work described . . . leads us to question the 
absolute necessity of paging and segmentation hardware in a machine in- 
tended for time sharing application. Segmentation undoubtedly allows an 
elegant system design . . . with convenient use of reentrant coding techniques. 
Paging in theory should allow better use of core memory, though not to the 
extent that was originally hoped. Unfortunately, these advantages are often 
paid for in processor speed. In some cases, moreover, the potential advan- 
tages of paging seem to have been dissipated by the temptation to careless 

3s. Fembach, “The Growing Role of Computers in the Nuclear Energy Field,” Lawrence Radia- 
tion Laboratory, May 3, 1967, page 5. 
Worlton, op. cit., page 43. 
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programming which a hypothetically infinite virtual memory seems to pre- 
sent, and by the temptation to under-design coming from architectural 
overoptimism.”5 This quote is given here to show that reduction to practice 
is a risky business indeed. 

There is, of course, a class of problems which is essentially noncomputa- 
tional but which\requires a massive and sophisticated storage system. Such 
uses as inventory control, production control, and the general category of 
information retrieval would qualify. Frankly, these do not need a computer. 
There are, however, legitimate justifications for a large computer system as a 
“partner” with the computational usage. 

One could argue that the economic benefit per problem of the large 
computer would disappear as smaller computers are improved. This would 
be true if smaller computers could be improved a t  a rate faster than the large 
computer. It would also be true if the large problems mentioned previously 
did not exist. However, neither case holds. Large computers are not a t  all 
limited in their rate of improvement, and the large untouched problems do 
exist. As to the first point, the author hopes that this book will show that the 
large computer has conceptual advantage over the small, or a t  least enough 
to  encompass the small. 

To sum up the justification for the large computer, the following points 
can be made. 

Problems are available which are substantially beyond existing computer 

Some problems, due to their size, are not attempted a t  all. 
Processing and storage resources necessary for large problems can be used for 

Large centralized computer systems can provide on-line service to terminals 

capability. 

economical solution of smaller problems. 

for a growing class of information systems, not otherwise available. 

B. BUILDING BLOCKS 

At the beginning of the 6600 project, the major components available 
and in use included: 

germanium transistors and diodes, 
air-cooled plug-in building blocks, 

magnetic tape secondary storage. 
ferrite magnetic cores, 

Although in the early 19606 other components were appearing, the above 
were sufficiently known and understood for production and field use. 

5M. C. Hamson and J. T. Schwartz, “SHARER, a Time-sharing System for the CDC 6600,’’ 
Communications of the ACM, X (October 19671, page 664. 

Logic circuits were typically constructed in a small number of building 
blocks, ranging from a dozen types to three or four dozen. Most electronics 
for central storage units were also constructed in building block form. Vary- 
ing types of design mechanization were valuable for this type of construction. 
Some computer-aided design was in use in which “logic equations” could be 
translated into wiring lists, assignment of building block types, parts totals, 
and so on. These schemes had four or five years of refinement and were being 
“fine-tuned.” During this period, switching speeds of transistor circuits had 
rapidly improved. Since the building block approach depended on back 
panel wiring to  accomplish the “logic,” an interesting problem was appearing. 
With increased circuit speed, the conditions in the back panel wiring began 
to affect the operation significantly. This took several forms, including 
oscillation, noise, crosstalk, limited fan-in and fan-out a t  high speed, and 
simply the total time for transmission on the Wiring. 

Similarly, the central storage units using ferrite magnetic cores were 
experiencing significant increases in speed, as well as storage capacity. The 
speed increases in central storage were more difficult, however. 

In spite of the substantial increases directly available in circuit and 
storage speed, the demands of large scale computation far outpaced any 
straightforward application of the faster units. I t  was apparent to the Con- 
trol Data designers that drastic changes in approach were necessary to ad- 
vance the large computer art. 

C. THE APPROACH 

In following chapters of this book, the approach taken in the design of 
the 6600 computer will be described in detail. In gross terms the approach 
included: 

abandoning building blocks in favor of complex, custom modules, 
moving from germanium to silicon transistors, 
moving from air cooling to freon cooling, 
adding parallel processing of functions, - interleaving of central storage units, - separating input-output from the central processor to ten peripheral 

adding facilities for multi-programming, and 
adding magnetic disk storage to the storage hierarchy. 

processors, 

PACKAGING 

The problems of the building block scheme required packaging more 
functions together to  reduce back panel wiring. The result of this was a 
higher density of logic per unit volume. Within each more complex module 
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the controlled electrical conditions and shorter wire lengths allowed much 
faster circuits. The higher density of circuits of course increases the heat 
density. 

Fortunately, the planar silicon transistor made a timely appearance 
offering very high speed and higher acceptable operating temperature than 
the germanium equivalent. 

The  complex module approach to logic circuit construction also in- 
creased component density in a way which appeared to preclude air cooling. 
Later versions of the 6600 module, however, provided for air cooling in 
limited size cabinets. As will be seen in a later chapter, the conductive cool- 
ing system chosen provided a very compact high density system with very 
tight temperature control. The possibility of a high density compact unit 
offered the opportunity of substantially more logic and storage in one main 
frame unit. 

PARALLEL FUNCTIONS-A THEORY 

That  there is a “theory” involved in the use of processing functions in 
parallel is perhaps a slight exaggeration, hopefully forgiven. A theory of 
multiprocessing may, for example, encompass it. What is meant here is the 
dimension of parallelism of function in a single job stream. 

Special purpose computers utilize a fixed-wired parallelism arising from 
the discipline of the specialization. Certain housekeeping operations are 
made to operate in parallel with the main operation of the device. Many 
such systems perform the housekeeping functions a t  arbitrary points in the 
sequence of events. There is, in fact, a “main” sequence of o rations and a 

any number of other wired-in parallel operations of a secondary nature. 
A “general” technique to accomplish the same type of parallel opera- 

tion can be had with a relatively small payment in hardware. The essentials 
for this scheme are: 

“housekeeping” sequence which may be executed in parallel. ? here are also 

- independent functional units, 
a scratch pad, 
instruction flexibility, and 
a control system able to schedule these resources. 

Functional Units can come in several varieties, including straight- 
forward arithmetic, indexing and incrementing facility, and control of stor- 
age. Independence of operation of these units means that data may enter 
and leave the units rather independently and that the internal operation is 
independent. In order to construct a situation similar to the “main” opera- 
tion and the “housekeeping” operation mentioned above, these two classes of 
function should be represented by separate functional units. For example, 
floating point arithmetic units might be applied to a “main” operation, and 
fixed point incremental units might be applied to the “housekeeping.” 

A Scratch Pad is a convenience for the control system and has a per- 
formance advantage over the central storage. Assignment of locations 
within the scratch pad can be made consistent with the usage of functional 
units. A sufficient number of registers, correctly applied, can provide a con- 
siderable overlap of operations, particularly reducing conflict in handling of 
intermediate and partial results. 

Instruction Flexibility is essential in assigning registers, establishing 
conditions of operational overlap of units, and augmenting the natural over- 
lap existing in an instruction stream. There are two methods for developing 
overlap, First is the use of complex instructions which define overlap condi- 
tions completely. Second is the use of “micro” instructions which can be 
arranged with flexibility to  provide overlap. While the first method is com- 
pletely valid, a potentially large number of instruction types are needed. 

The Control System for the “micro” instructions is required to main- 
tain status of the functional units, the scratch pad, and the data paths avail- 
able, and to  minimize the time lost in reusing these resources. 

Examples of the effect of functional overlap are shown in a later chap- 
ter. In the Control Data 6600 Computer, the units, registers, and control 
system are designed to emphasize the flow of instructions. If an instruction 
calls for a unit which is not busy, the instruction is turned over to  the unit 
whether the input data is ready or not. The premise behind this approach 
is that instructions following are not blocked. A later instruction, for exam- 
ple, may not be required to wait. 

PERIPHERAL PROCESSING 

While the above theory is specifically applied to the central processing 
unit, it can also be used in a broader context in the peripheral processing 
units of the 6600. These small processors can be assigned relatively inde- 
pendent activity either within a single job or in an environment of many jobs. 
In this last case, the convenience and advantage of multi-programming is 
effectively the overlap of jobs. As each job or task reaches a wait condition, 
for whatever reason, a new job can be substituted. This is a rather normal 
condition for a large centralized computing system servicing many users. 

Attempts to separate peripheral processing from central processing 
include the “direct-coupled” systems or the use of a “front-end” machme. 
This effectively assigns the peripheral processing to  one additional processor. 
In the 6600 the addition of ten small processors for this job opens the way to 
more complex and flexible system configurations. 

MULTI-PROGRAMMING 

A system is required, of course, for this multiple usage. 
Transfer of jobs from input devices to storage, from storage to processor 

and back, and from storage to output devices in the presence of many other 

I 
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jobs is a major supervisory achievement. To prevent major obstacles and 
overhead in this process, a few rules are essential. Simple message formats, 
simple decision alternatives, and straight-forward procedures are a great help 
to  this operation. 

It is also a convenience to relieve the Central Processor Unit (CPU) 
from most of the burden of moving data within the storage hierarchy. For 
this reason, a convenient early operating system utilized a Peripheral and 
Control Processor (PPU) as a supervisor or monitor. In general, however, 
the operation of the entire system involves both the management of Input/ 
Output (I/O) resources and the scheduling and supervision of the central 
resources, such as central storage and CPU. If the CPU is idle, for example, 
it can be used to obtain its next job, if no 1/0 action is required. 

0 RG AN 1 ZAT I0 N 
OF THE 6600 

A. GENERAL 

We have seen in the preceding chapter that a number of factors com- 
bine to complicate the design of the very large computer. However, the large 
size also gives room for design innovation. The idea of parallel functional 
units, for example, could hardly be tried in a small system. In spite of the 
complexity of the large system, there is also simplicity because there are 
separately defined and implemented functions. A broad description of the 
major elements of the Control Data 6600, shown in Figure 1, will be given in 
following sections of this chapter. 

From this block diagram it should be clear that the connection to  all 
external equipment is separated from both the central storage and central 
processor by the peripheral subsystem. Of major importance to this separa- 
tion is the independent operation of the central processor and the peripheral 
processors. More detailed description in later sections will show the me- 
chanics of this independent operation. 

PERIPHERAL SUB-SYSTEM 

CENTRAL 12 10 EtJbtK -I PE:AER\\R;L H PROCESSORS PERIPHERAL H STORAGE 
CENTRAL 

PROCESSOR 

FIGURE 1 
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The theory behind such a separation between central processing and 
per@heral processing is essentblly that of multiprocessing in general. 
Simply stated, it should be possible to accomplish a number of independent 
tasks with great efficiency in a set ofprocessors connected to common storage. 

a ,  

For the theory to hold true, a few conditions are essential. 

There must be a number of independent tasks. 
The common storage must be able to support the data traffic. 
The time interval needed for task initiation must be much shorter than that of 
the task itself. 

The above conditions tend to permit simultaneous processing of tasks. 
In  a typical usage of a large computer a single complete job may be 

regarded as being made up of a number of tasks. For purposes of illustration, 
the following list of tasks could be defined. 

1. Initiate control of input device. 
2. Transfer input data to input buffer. 
3. Establish input file. 
4. Perform n computational tasks. 
5. Establish output file. 
6. Initiate control of output device. 
7. Transfer output data to output buffer. 
8. Transfer output data to output device. 

From this example, the idea of assigning a number of small processors to 
the peripheral tasks would appear valuable, particularly if there is a flow of 
jobs available to the system. 

B. PERIPHERAL SUBSYSTEM 

Ten small processors are included in the 6600 Computer, as shown in 
Figure 2. They are called Peripheral and Control Processors (PPU). 

Each of these ten small processors contains a private storage unit and an 
arithmetic and control capability. Each processor has access to the Central 
Storage and to the peripheral channels. Some of these properties are listed 
below. Each PPU has: 

- Storage unit of 4096 12-bit words. 
Storage unit cycle time of one microsecond. 
An accumulator register of 18-bit length. 
A repertoire of sixty-two instructions. 
Ability to transfer one word or a block of words to or from central storage. 
Ability to transfer one word or a block of words to or from a peripheral 
channel. 

EXTERNAL 
EQUIPMENT 

PPO STORAGE 

CENTRAL CENTRAL 
STORAGE PROCESSOR 

PERIPHERAL PROCESSORS 

FIGURE 2 

Each PPU executes an independent stored program located in its pri- 
vate storage unit. These stored programs are loaded by an operator by 
means of an operation called DEAD START. Details of this operation are 
described in a later chapter. 

Each PPU can communicate with any of the other nine in two ways, 
central storage or a peripheral channel. For this communication to occur, 
each processor involved must “cooperate” by means of its stored program. 

Each PPU can communicate with the Central Processor Unit (CPU) 
in two ways, central storage and “exchange jump.” For communication to 
occur through the medium of Central Storage each processor involved must 
“cooperate” by means of its stored program. In this case, one of the stored 
programs is in the PPU, and the other stored program for the CPU is located 
in Central Storage. The “exchange jump” signal is “one way’’ in that any 
PPU may cause the CPU to halt its current program and begin a new one. In 
this case, “cooperation” by the CPU is unnecessary since the exchange jump 
is a hardware property. 

The Peripheral Processors may independently utilize any of the Peri- 
pheral Channels. For illustration a printer is shown connected to a Peri- 
pheral Channel and, in turn, to a PPU in Figure 3 (page 12). 

I t  should be noted that no fixed relationship exists between Peripheral 
Channels and Peripheral Processors. In this illustration, Figure 3, channel 4 
is connected to the printer and PPU 2 is controlling the device. On com- 
pletion of the printing operation, PPU 2 may be reassigned to  another task 
and to another channel. Similarly, several devices may be connected to a 
channel. On completion of the printing operation, channel 4 may be assigned 
to another device connected to the channel. 

In this case a printer, as shown, can be driven from either of two chan- 
nels, channel 4 or channel 8. The advantage of this technique is dependent 
on the kind of system configuration desired. 
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C. CENTRAL PROCESSOR-CPU 

The Central Processor of the Control Data 6600 Computer is based on 
a high degree of functional parallelism. This is provided by the use of many 
functional units and a number of essential supporting properties, as shown in 
Figure 4. 

The ten functional units are independent of each other and may operate 

DIVIDE I, /FIXED  AD^ 

SHIFT 

BRANCH 

CENTRAL PROCESSOR 

FIGURE 4 

simultaneously. In a typical central processor program a t  least two or three 
functional units will be in operation simultaneously. The ten units are: 

Floating Add 
Floating Multiply (2) 
Floating Divide - Fixed Add 
Increment (2) - Boolean - Shift - Branch 

Twenty-four registers are included in the Central Processor. Eight of 
these are assigned as operands or data words and are sixty bits in length. 
Eight are assigned as index registers and are eighteen bits in length. Eight 
are assigned as address registers and are eighteen bits in length. All arith- 
metic functions are executed on operands from the registers with results re- 
turned to the registers. The selection of the sixty-bit length was made for 
efficient instruction packing and for extended floating point precision. The 
eighteen-bit registers provide a convenient size for address manipulation. 

Instructions in the CPU are three address in general, one register ad- 
dress for each of two operands and one result. For example, the equation 

A = B + C  

contains two operands, B and C, a function +, and a result A. 
The use of registers in the Central Processor allows for convenient 

handling of partial or intermediate results. Central Storage could, of course, 
be used for these values. However, a store operation followed by a fetch op- 
eration would be required with a significant time penalty. 

Instructions are loaded into the CPU in sequence from Central Storage 
under control of a Program Address Register. As the CPU program pro- 
ceeds, up to a maximum of seven “old” instruction words are saved. Under 
some circumstances, these old instructions can be reused without referencing 
memory. An obvious case is shown below. 

Location Contents 

3 Program Address n 
Program Address n + 1 
Program Address n + 2 
Program Address n + 3 
Program Address n + 4 

Instruction Word n 
Instruction Word n + 1 
Instruction Word n + 2 
Instruction Word n + 3 
Conditional Branch to n 

In this example a conditional branch instruction in program address 
location n + 4 calls for a “loop” back to location n. Under the correct cir- 
cumstances, this entire loop can easily be held within the instruction stack. 
The program can loop within the stack itself a t  high speed without requiring 
any storage references for instructions. There are two advantages to this 
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case. First, the instruction fetch is much faster. Second, fewer storage con- 
flict conditions are possible since fewer actual storage references are made. 

Instructions are introduced to the control system in sequence. A simple 
test is made in a unit called the SCOREBOARD, after which the instruction 
is &ued to  the appropriate functional unit or is held until the test can be 
passed. The test determines if the functional unit is busy and if the register 
assigned for the result is not reserved. Instructions may be issued a t  a very 
high rate, held back only by the unit busy or register reserved condition. 
With a number of functional units and a number of registers available, the 
probability of high issue rates is reasonably good even without any optimiza- 
tion efforts. 

Data transfer occurs between the Central Storage and Central Proces- 
sor on a number of separately controlled paths. Five of the 60-bit registers 
are assigned as read registers and two as “store” registers. This reflects a 
typical unbalance of traffic between read and store. Address registers are 
assigned one-for-one with each of these read and store registers. In order for 
a storage reference to be initiated for a data transfer, the specified address 
register is set to the desired address by a CPU instruction. This new address 
is used to reference storage for a read or a store depending on which address 
register was set. The data will enter or leave the operand register in a 
“partner” relationship with the address register, as shown in Figure 5. 
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In summary, the CPU contains five essential ingredients for parallel 
execution of a single stream of instructions. These are: 

- Ten independent functional units, 
Twenty-four registers, 
A control system with scoreboard, - An instruction stack, 
Multiple paths to Central Storage. 

D. CENTRAL STORAGE 

Any large-scale computer is critically dependent on a powerful central 
storage system. In spite of methods which tend to reduce the number of 
references to the Central Storage, the remaining references have a dominat- 
ing effect on the processing speed and system throughput. The organization 
used in the 6600 Central Storage is the result of a sensitive balance of physical 
and economic considerations to serve the requirements of the CPU and the 
peripheral subsystem. 

Design of a high-speed storage unit is affected by the following con- 
siderations which may be termed axioms. 

1. Storage cycle time tends to increase directly with the size of the storage unit. 
2. Storage cost per bit tends to increase inversely with the size of the storage unit. 

The design is forced into a storage hierarchy by these conditions, espe- 
cially as the need for more storage grows. The 6600 Central Storage was 
limited to  131,072 words with a second level in the storage hierarchy supplied 
by Extended Core Storage. A substantial economic differential exists be- 
tween these two levels. 

Shown in Figure 6 is the system interconnection of the Central Storage. 
Control of storage references to Central Storage is provided by the STUNT 
BOX. 

EXTENDED 

STORAGE 

FIGURE 5 FIGURE 6 
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The Central Storage of 131,072 60-bit words is constructed in 32 inde- 
pendent banks. These banks are arranged in an interleaved fashion which 
provides a high degree of random access overlap and block transfer speed. 

An address of seventeen bits is split as shown in Figure 7. The least 
significant five bits of the address are used to define the bank. If the address 
is repetitively increased by one, all 32 banks will be referenced before return- 
ing to the h t  bank. For block transfers, this allows the storage cycle to be 
32 times longer than the time required to transfer a single data word. As a 
practical matter, other factors tend to establish the relationship of the 
storage cycle with transfer cycles. 

12 5 
I WORD ADDRESS I -1 
16 0 

FIGURE 7 

Two cycles are defined in the computer. The first of these, the MAJOR 
CYCLE, is identical with the storage cycle of the PPU storage unit and the 
Central Storage unit. The second, the MINOR CYCLE, is a measure of the 
time taken to transfer one data word through the storage distribution sys- 
tem. A s  will be seen in later chapters, most operations are directly related 
to the MINOR CYCLE. 

MAJOR CYCLE-1000 nanoseconds, or one microsecond. 
MINOR CYCLE-100 nanoseconds. 

The STUNT BOX is designed to provide a maximum flow of addresses to 
the Central Storage. Occasions in which an address is being held because of 
a bank-busy condition do not stop other addresses from passing. Imple- 
mentation of this unit in the 6600 is especially dependent on the synchronous 
and predictable nature of the Central Storage system. 

The storage unit making up both the Central Storage system and the 
Peripheral Processor “private” storage is a magnetic core, coincident-current 
unit. As will be shown, this unit is moduld and pluggable, with the following 
properties. 

Storage Read and Store Cycle-1000 nanoseconds, 
* Word Length-12 bits, 

Capacity4096 words, 

Central Storage banks require five such units making up a word length of 
60 bits and a capacity of 4096 words per bank. 

The  protection of data or programs held in the Central Storage is ac- 
complished by the Central Processor and Peripheral Processors independ- 
ently. The Peripheral Processors are instruments of the operating system 
and, as such, have access to Central Storage only by assignment. The Cen- 
tral Processor is an instrument of the operating system at  one time and under 

control of a “user” program at  other times. In either situation, the Central 
Processor is allowed access to an area specified by the operating system. 

E. EXTENDED CORE STORAGE 

A new element of computer storage hierarchy is the Extended Core 
Storage (ECS). It would be an understatement to point out that this ele- 
ment is an unknown factor in the performance or economy of a computing 
system. This unit was added to the 6600 computing system, well after first 
deliveries, in an effort to smooth the storage hierarchy. Studies of actual 
practice should place a proper perspective on this unit. In any case, early 
usage coupled with simulation studies show it to be an important unit indeed. 

The next level of storage hierarchy has been a rotating magnetic device, 
such as the magnetic drum or disk. While these are valuable, there is con- 
siderable performance difference between them and the Central Storage. 
This “gap” is, and will be, a target for inventive offerings. A later chapter 
will detail the nature of the various devices contributing to this gap. 

A primary goal of the Extended Core Storage is simply the economic 
enlargement of Central Storage. While direct random access of the extended 
storage is a valid and acceptable use, a particular advantage exists in block 
transfers between Central Storage and Extended Core Storage. This ad- 
vantage is a by-product of the specific properties of the Extended Core unit. 
Some of the more pertinent characteristics are: 

Extended Read and Store Cycle-3.2 microseconds, 
Storage Word Length-480 bits, 
Bank Capacity-125,000 “central” words (60-bit), 
Number of Banks-Up to 16, 
Interface Trunk Width-60 bits, 
Interface Trunk rate-10 “central” words per microsecond 

As will be shown in detail in later chapters, this transfer rate is capable 
of matching the maximum transfer rate of the Central Storage. As a result, 
block transfers between these two storages can proceed at maximum system 
rate. This transfer rate is some fifty times the equivalent rate through a 
Peripheral Channel. 

The diagram in Figure 8 shows the logical organization of the Extended 
Core Storage connected to two 6600 Computers. The Central Processor 
initiates any transfer, whether it is a single 60-bit word or a block transfer. 
Control is given to a unit called the ECS Coupler, which establishes control 
over both the Central Storage and the Extended Core Storage for the com- 
plete transfer. 

Shown in the diagram are four sets of one-half million words, each 
under control of a unit called the ECS Controller. This unit allows connec- 
tion of four access channels similar to the ECS Coupler connection. It can be 
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seen that  this type of organization allows the Extended Core Storage to be 
a central “common” storage for a system of multiple processors. 

Note that each computer utilizes an ECS Coupler to control its trans- 
fers, with the ECS Controller handling the storage unit. For illustration 
purposes, a printer is also shown with a “dual channel” controller connected 
to a Peripheral Channel from each computer. 

Storage protection in Extended Core Storage is accomplished in a 
manner similar to Central Storage. Since the Central Processor of each 
attached 6600 Computer is the only unit making reference, the protection 
mechanism can be located in the CPU. This mechanism is separate from 
that providing protection for the Central Storage. 

The CPU initiates transfers by defining an initial address in Central 
Storage and an initial address in Extended Coke Storage. The length of 
block is specified in the CPU instruction; whereas the initial addresses are 
defined by address register A0 of the CPU and its “partner” operand reg- 
ister. Note that ECS requires an address register of 21 bits in order to define 
two million locations. Similar to the Central Storage, a group of storage 
banks is interleaved for block transfer performance advantages. This inter- 
leaving is limited to four banks, however. 

A principal usage of Extended Core Storage involves “swapping” of 
programs or data between the Central Storage and ECS. A theoretical 
advantage can be claimed for holding segments of programs in the central 
storage because of the time penalty, or overhead, of swapping. Therefore, 
the very high transfer rate of ECS has a particular advantage, whether 
swapping is a primary strategy or not. 

BASIC CIRCUIT 
PROPERTIES 

Ill 

Although it is not necessary tc know the intimate engineering details 
to study the logic of computers, the knowledge gives additional insight into 
the underlying reasons for the design. For it should be remembered that 
even the most exquisite piece of logic must be fitted into the physical ground 
rules in order to be put to  work. 

A. THE SILICON TRANSISTOR 

There is a striking chronological relationship between the appearance 
of the silicon planar transistor and the Control Data 6600. This component 
was much sought after for many early years of transistor development. 
However, the methods used in those early years did not succeed with silicon. 
As a result, early transistor computers used germanium which is perfectly 
satisfactory under controlled environment. Upper limits of temperature 
during manufacture and during operation are very much lower for germa- 
nium than silicon. 

When the planar process was invented, the advantages of silicon were 
open to use. Of particular importance to computer circuits are the higher 
junction temperatures allowable and generally higher current and power 
levels allowable. 

A second important value resulting from the planar process is the higher 
device speed. This can be attributed to the use of the NPN configuration 
for the transistor, a configuration that had been difficult to obtain. While 
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the PNP configuration had been useful, it was inferior in charge storage, thus 
limited in high-speed switch usage. [Note: The letters NPN refer to im- 
purity characteristics of the collector, base and emitter respectively. “N” 

specifies an excess of electrons, thereby implying a negative charge. “P,’ 

specifies a lack of electrons, thereby implying a positive charge.] 
In terms of economics, reliability, and device performance, the silicon 

transistor has been a success. The manufacturing yield of the transistor is a 
rather sensitive function of surface area of the silicon used. At the very 
small sizes problems of mask alignment, handling, and packaging combine 
to preclude the use of dice smaller than 10 to 20 mils on a side. [Note: Dice 
refers to the final “chip” of silicon into which are diffused the transistor 
elements.] 

Figure 9 shows the yield as a function of utilized area. As the area 
increases past the peak yield, the constants kl and kz for the exponential 
portion of the curve depend on the average number of defects per unit area 
and the process used to manufacture the device. As a practical matter the 
peak attainable yield is a reasonably good fit with a high-speed transistor. 

TYPICAL RANGE OF AREA FOR TRANSISTORS 
AND INTEGRATED CIRCUITS 

YIELD 

AREA 

FIGURE 9 Relationship between yield and circuit area in integrated ,circuit pro- 
duction. 

(, 
Figure 10 shows the improvement in reliability of transistors during the 

ten-year interval 1954 to 1964. According to this curve, the failure rate is 
approachng a limit value of 4 x 10-9 failures per hour, or a more familiar 
figure of 0.0004 percent per 1000 hours. 

This rate of failure is lower than that of the interconnections between 
components in a computer circuit. Since the entire 6600 Computer contains 
approximately 400,000 transistors, the system mean free time between fail- 
ure due t o  the transistor is over 2000 hours. 

The silicon transistor used is made beginning with an intrinsic-type 
wafer of silicon. An epitaxial layer of n material is grown on the surface of 
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FIGURE 10 Reliability improvement in transistors over the ten-year period 1954- 
1964. 

the wafer, and the elements of the transistor are made by using a photo- 
graphic masking technique to permit successive diffusions of alternating p 
and n material into the epitaxial layer. EPITAXY is a method for obtaining a 
constant impurity concentration in a very narrow layer and, in the case of 
this transistor, is important to its speed characteristics. (See Figure 11, 
page 22.) 

B. DCTL LOGIC CIRCUITS 

The basic logic circuit used in the 6600 Computer is the Direct-Coupled 
Transistor Logic circuit, abbreviated DCTL. This is one of the simplest 
switching circuits devised and is heavily dependent on the transistor char- 
acteristics for its operation. The basic inverter is shown in Figure 12 
(page 22). 
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The selection of the logical representation of the circuit allows for two 
possibilities. For example, in the circuit of Figure 13, two truth tables may 
be made. 

NAND 
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FIGURE 13 

+ 
FIGURE 12 

The circuit provides a logical inversion (NOT), and the output may be 
used to drive several similar circuits. Signal levels, as seen at  either an input 
or an output point, are either + 0.2 volt or + 1.2 volt. Two symbolic repre- 
sentations for this circuit are also shown in the figure. A +1.2 volt signal 
a t  the input turns on the transistor and drives it into saturation. The condi- 
tion of saturation is such that no amount of additional base-emitter current 
will cause the collector-emitter voltage drop to go any lower. This is a limit 
condition and results in charge storage in the transistor. The approximate 
value of the collector-emitter voltage drop is +0.2 volt. 

With a +0.2 volt input, the collector voltage rises toward +6  volts, 
but is limited to + 1.2 volt by current flowing in the base of load transistors 
being driven by the circuit. 

The threshold voltage a t  the base of the transistor is approximately 
+0.7 to +0.8 volt. Below this value virtually no current‘ flows in the tran- 
sistor. Above this value, current flows in the base-emitter path and in the 
collector-emitter path. Circuit parameters for the cutoff and saturation 
conditions are listed below. i 

The two tables shown below represent an arbitrary definition of the 
signal levels to the logical values “1” and “0.” Table I defines input logical 
“1” as +0.2 volt and output logical “1” as + 1.2 volt. Table I1 defines input 
logical “1” as + 1.2 volt and output logical “1” as +0.2 volt. In other words, 
the logical value inverts between input and output. 

Actual Conditions Table I Table I I  

A 0.2 1.2 0.2 1.2 1 0 1 0 0 1 0 1 
B 0.2 0.2 1.2 1.2 1 1 0 0 0 0 1 1 

c 1.2 0.2 0.2 0.2 1 0 0 0 0 1 1 1 

Assume that the two logical representations of Figure 13 are assigned 
to the two tables, the “circle” to Table I and the “square” to Table 11. I t  
should be clear that the result of the circle is C = AB and that the result of 
the square is C = A + B. 

It should be an interesting exercise for the student of Boolean algebra 
to prove this without recourse to the artifice of “inverted” definitions. 
Before getting away from this, however, the reader should observe that 
measurements taken a t  test points will tend to follow nicely this mental 
gyration. 

Since a computer design is made up of fairly simple combinations of 
AND, OR, and NOT, i t  is instructive to show two such combinations in Figures 
14 and 15. These two cases utilize the definition of logical value “1” as + 0.2 
volt for the points labeled A, B, and C. 

Note that this remains consistent with the previous artificial definition. 
These two figures illustrate another characteristic of the DCTL circuit. 
Brief mention was made about driving several “load” circuits. This facility 
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t 6 v  + 6 v  

C = A B  

FIGURE 14 

is equally available in either the “circle” or the “square” configuration. It 
should be clear then that the value AB is available in Figure 14 and the values 
A and B are available in Figure 15. 

+ 6 v  + 6 v  

B 

C = A + B  

FIGURE 15 

C. LOGIC SYMBOLS 

The logical representations used in the preceding figures are based on 
a very simple relationship with the electrical co ponents used. r“ 

Symbol Logical Function Electrical Component 

+ Inversion Transistor (Including Its 

0 Usually AND Combination Collector Load Resistor 
0 Usually OR Combination Collector Load Resistor 

Base Resistor) 

The apparent advantage to the designer of knowing from the logic 
diagram an exact count of electrical components is specific to this type of 

Figure 16 shows the representation of the exclusive OR function 
using the symbols described above. In later chapters it will be seen that the 
“intermediate” values available in the combination of Figure 16, specifically 
the outputs of the “circles,” can be powerful uses of the DCTL circuits. 

logic. 

A e t a B  

2 

FIGURE 16 

At this point, it is convenient to describe some of the ground rules of 
use of the DCTL circuits, as defined in the 6600 Computer. One circuit 
which may be a common collector connection of several transistors can drive 
several other transistors, either on the same module or on a separate module. 

A circuit may drive up to five transistors when all transistors, including 
driver, are physically on the same module. This loading limitation is found 
experimentally from variations in base threshold voltage and corresponding 
base current demand in the load transistors. It is also affected by the im- 
pedance level of the etched copper printed circuit interconnection within the 
module. For each load configuration the driver collector resistor RL and 
base resistors Rb of the driven transistors are adjusted to limit and balance 
the base currents. 

Other load limits apply when the circuit load is on a separate module, 
requiring back panel wiring. A circuit can simultaneously drive up to  two 
transistors on a separate module. Loading in this case accounts for the loss 
on the transmission line connecting the two modules as well as variations in 
base threshold voltage. 

An additional limit of six collectors connected together for OR and AND 
functions completes the very simple list of constraints. This limit is required 
for speed reasons only and represents the maximum capacitance acceptable 
a t  a collector point. The time constant “t” may be calculated for this point 
from the capacitance per collector and the collector load resistor RL. Using 
the highest value of RL of 680 ohms and 2 micro-micro-farads for each col- 
lector, the time constant for six collectors is 8.16 nanoseconds. 

The exponential charging of the collectors toward the power buss (+ 6 
volt) is held at  the value +1.2 volt by load currents. Therefore, a small 
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FIGURE 17 

fraction of the 8.16 nanoseconds is consumed for the “turn-off ” case, as shown 
in Figure 17. In fact, the rise time due to capacitance is shorter than the 
transistor turn-off characteristic. One can easily see that a faster transistor 
would require changes in this rather comfortable balance in order to be 
effective. 

The circuit of a flip-flop and its clear/set input are shown in Figure 18. 
This basic flip-flop may have up to five set inputs and five clear inputs; in 
this example only one of each is shown. The set input is fed from a three-way 
AND gate, of which one input comes from the clear/set network. 

FIGURE 18 Basic flip-flop with clear/set input. 

The clear/set network enables the flip-flop to be cleared and reset by 
the same gating pulse. In most cases this will be a twenty-five nanosecond 
clock pulse. Figure 19 shows a logical representation of this circuit and a 
timing diagram for the clear/set operation. 

The previous definitions of logical “1” are required. All input and 
output connections as shown in Figure 19 define a “1” as +0.2 volt. 

A useful symbolic treatment is shown in this figure with the letters 
“A” through “E” labeling the circles and squares, as shown. For clarity 
these are shown also in Figure 18. The timing chart assumes an inverter 
delay of five nanoseconds in all cases. 

One important characteristic of this circuit is that the set output is 

+ 0 . z v  “1 ” . 
SET OUTPUT 

CLEAR OUTPUT 

PULSE 
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FIGURE 19 Flip-flop logical representation and timing chart. 
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available immediately after the inverter delays represented by “C” and “D.” 
However, the clear output is not available until after the inverter delays 
following the trailing edge of the clear/set input signal. 

The spike shown for the case of the flip-flop initially set is nominally five 
nanoseconds wide, representing the difference in the path A-E-D and 
A-B-C-D. 

A summary of design constraints is: 

- a collector can drive five bases in a module, - a collector can drive two local bases in a module and two bases by back-panel 

six collectors can be connected within a module. 
twisted pair on one other module, 

D. TRANSMISSION LINES 

For back-panel interconnections and for chassis-to-chassis intercon- 
nections, two kinds of circuits are used. At the high frequencies used, these 
interconnections must be treated as transmission lines and protected from 
anomalous behavior. 

Within one chassis it is convenient to  interconnect using a “DC” form 
of circuit since the DCTL logic within the module can then be easily treated 
between modules. Distances of the wiring within a module are two to three 
inches maximum with transmission velocities of about 0.1 nanosecond per 
inch. Distances external to the module but within a single chassis can range 
up t o  about five feet, with transmission time of about 1.3 nanosecond per foot. 
Since the circuit speed is in the range from three to five nanoseconds, this 
distance must obviously affect the design. 

The twisted pair driver is shown in Figure 20. Initially, consider Q1 
conducting so that its collector is a t  +0.2 volt. With Q2 turned off, the 
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FIGURE 20 Twisted pair driver. 

transmission is terminated as an open circuit. Since this line will not go 
anywhere else, the open termination is allowed, and a termination for the 
reflected signal is needed at the sending end. 

A +0.2 volt input causes the collector of Q1 to rise toward +6 volts. 
Current splits between the resistor-diode leg and the twisted pair line, with 
6.7 milliamperes out of the total of 10 ma being sent into the line. This value 
of current is found from the resistance values, the forward characteristics of 
the diode, and the surge impedance of the transmission line. This last value 
is in the range of 130 ohms to 150 ohms. 

A wavefront of voltage and current is sent down the twisted-pair trans- 
mission line, with the incremental voltage adding to the rest state of the line 
of +0.2 volt. At the base of Q2, the voltage of this wavefront exceeds the 
threshold of the base, causing base-emitter current to flow and turning on 
Q2. This current does not represent a perfect termination for the line; there- 
fore, a reflected wave of voltage and current is sent back through the twisted- 
pair transmission line. When this reflected wave front reaches the sending 
end, the resistor-diode network appears as a perfect termination. Therefore, 
no further reflections are introduced, and the line is stable at + 1.1 volt. 

In the reverse case in which Q1 is turned on, a similar wave is sent down 
the line and is, in turn, reflected. The reflected wave returns to the sending 
end to iind the least resistance path to be the collector-emitter path of Q1. 
The resistor in series with the line then serves to correct the network to a 
perfect termination. 

The shunt diode and resistor are replaced by a transistor and its base 
resistor when it is necessary to drive a circuit on the same module. The cir- 
cuit operates in the same manner since the base-emitter circuit of the tran- 
sistor acts as a diode. 

The symbols used for the twisted pair driver and receiver are squares 
and circles as in the rest of the logic, with a small circle signifying the module 
connection. 

Interconnection between major physical entities, such as chassis or 
cabinets, is accomplished by pulsed transmission over coaxial cables. Prin- 
cipal reasons for this are related to self-induced electrical noise and protec- 
tion against external electro-magnetic noise. The coaxial transmission cir- 
cuit is shown in Figure 21. 

Initially, Q1 and Q2 are turned off so that no current flows in the pri- 
mary winding of the transformer. When Q1 is turned on, a current flows 
from the + 6 volt supply through one half of the primary winding; a current 
also flows in the secondary winding by transformer action. The transformer 
is designed for a 25-nanosecond pulse. Therefore, the input signal to Ql 
must be limited to that length of time. This signal is transmitted down the 
coaxial cable as a wavefront of voltage and current much the same as the 
twisted pair case. However, the receiving circuit includes a terminating 
shunt resistor, which prevents any reflecting waves. 
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FIGURE 21 Coaxial cable driver. 

When Q1 is turned off, the positive-going voltage signal is coupled 
through the capacitor C1 to the base of Q2, turning i t  on. Collector-emitter 
current flowing in Q2 also flows in the second half of the primary winding of 
the transformer, in an equal but opposite polarity to the first 25 nanosecond 
pulse. The values of C1 and R are so chosen as to hold Q2 on for 25 nano- 
seconds, producing a complete cycle of positive and negative signal through 
the transformer. This second negative polarity pulse produces no effect on 

FIGURE 23 

FIGURE 22 

the receiving transistor. However, it effectively equalizes the magnetic state 
of the transformer, removing any “burst” effects. 

Only when a “1” is to be transmitted is a pulse sent through the coaxial 
cable. A new signal can be transmitted every 100 nanoseconds, previously 
defined as a MINOR CYCLE. Time of propagation in the coaxial cable is 1.5 
nanoseconds per foot. Cables used from chassis to chassis are standardized 
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a t  10 feet, resulting in a time interval of very close to 25 nanoseconds from the 
beginning of the input signal to Q1 and the beginning of the output signal 
from Q3. 

All uses of this coaxial transmission within the 6600 Computer involve 
a synchronous pulse derived directly from the computer’s clock oscillator. 
I t  is of special interest that the clock itself is also transmitted throughout 
the system using the coaxial transmission. 

E. PACKAGING 
From the time that the transistor became available for computer de- 

sign, packaging methods have become increasingly important. A particu- 
larly difficult set of problems centers around the power distribution and cool- 
ing methods. As more and more components are crowded together in large 
computer systems, it has been necessary to examine alternatives to the tra- 
ditional air cooling. Similarly, the ability to pack components greatly ex- 
ceeds the ability to reduce the power expended per logical decision. This can 
be described as in the chart shown in Figure 24. 

5 
POWER 

LOGICAL LOGIC 
DECISIONS 

CUBIC FOOT 
(THOUSANDS) 

LOGICAL 
DECISION 
(WATTS) 

PER 3 

1 .05 

FIGURE 25 

i955 

FIGURE 24 
1960 1965 

The curve of logical decisions per cubic foot ignores space in which no 
power is being dissipated. What this chart shows is that the packing den- 
sity increases are causing a net increase in power dissipated per cubic foot, 
despite the drop in power per logical decision. A word of caution here. This 
condition exists in the large-scale class of computers, where high-packing 
density is necessary for achieving increased speeds. For smaller systems this 
would not be necessary. However, the trends in use of integrated circuits in 
new designs would appear to be following a similar set of curves. 

Circuits in the 6600 Computer are packaged in modules as shown in 
Figure 25. Two printed circuit boards are mounted side by side with com- 
ponents mounted in between in a “cordwood” fashion. Transistors in metal 
cans are mounted on the inside surface of each board; the collector, base, and 
emitter leads are inserted through holes and soldered on the outer surface to 
the printed circuit wiring. Resistors are mounted’from board to board 
through holes and soldered also on the outer surface. 

A 30-pin connector fastened on one edge of this assembly allows the 
module to be plugged into the back panel. The module connector mates 
with a chassis, or back-panel, connector. At the opposite edge of the module 
assembly is mounted a cover plate containing captive screws. This plate 
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Operator console with keyboard and display. 

connects the module to the chassis mechanically and also f ms part of the 

number for the module and up to six test point terminals. These test points 
are connected to the circuits a t  points considered most desirable by the 
designer. 

Modules are mounted in a vertical chassis in separate compartments. 
Compartment side walls, the connector to the back panel, and the module 
cover plate have a black finish to aid thermal radiation. Horizontal rows of 
modules are separated and supported by metal bars, similar to shelves. A 
copper tube is imbedded in each bar and is connected to  a Freon refrigeration 

path for conducting heat from the module. The plate carri E an identifying 

system. Component heat from each module is carried by conduction 
through the printed circuit board, module plate, compartment walls, and 
cold bars. The cold bars are held at  a minimum temperature of 60°F. Some 
control of room humidity is necessary at  this temperature in order to prevent 
dew point condensation. 

Central storage modules are similarly pluggable and will be described in 
a later chapter. 

A chassis is capable of holding 756 logic modules. Power from a supply 
of +6 volts is distributed by a bus bar "ladder" integrated into the chassis 
structure. Each module has a single lead connecting both ground and the 
supply voltage. The DC voltage is obtained on the chassis by means of dis- 
tributed transformer, choke, capacitor, and rectifier elements. Power is 
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FIGURE 26 Cabinet top view. 
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brought into each chassis through a three-phase, 400-cycle cable from the 
system motor-alternator. This technique effectively “encloses” the chassis 
from the point of view of power and ground. The method assumes a rela- 
tively well regulated load, a condition which is particularly straightforward 
with the DCTL circuit. 

Chassis are mounted in four cabinet bays, as shown in the top view dia- 
gram of Figure 26. The chassis are hinged to swing out as shown in one of the 
bays. In effect, the chassis are located as if in a cylindrical configuration. 
The particular value of this method is the minimum cable distances between 
chassis. All cables are cut to a standard length of ten feet, which includes 
about four feet within the chassis back-panel area. 

CENTRAL STORAGE 
SYSTEM 

IV 

Increasingly in large-scale computer systems, the central storage sys- 
tem, or “memory,” is the dominating influence on cost and on performance. 
For fifteen years the ferrite magnetic core has been the basic component 
used. Other alternatives include magnetic thin film, plated wire and, in early 
computing days, the Williams tube which was a form of capacitive storage. 

Magnetic core storage has ranged from twenty microseconds for a com- 
plete read and store operation, using a physically large core, to progressively 
faster cycles with smaller cores. Techniques for interconnecting these mag- 
netic cores have utilized the coincidence of two or more magnetic fields, usu- 
ally referred to as coincident current or 3-D. Linear-select methods which 
do not utilize magnetic coincidence, except for storing, are referred to as 2-D. 
An interesting intermediate technique is a linear-select method referred to as 
23-D. In general, 3-D is preferred for the smallest storages; 2-D is preferred 
for the largest storages; 24-D is found in a narrow intermediate range. 

It is a tribute to the magnetic core that many computer people refer to 
the Central “Core” as synonymous with Central Storage, reflecting the fact 
that the ferrite core is the component most used for Central Storage. 

A. STORAGE MODULE 

Within the 6600, Central Storage and each Peripheral Processor use a 
coincident-current storage module with the following properties. 
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12-bit word length. - 4096, 12-bit words. 
Read-write cycle of 1000 nanoseconds. 

Since Central Storage requires 60-bit words, storage modules are con- 
nected as one bank. The module is physically constructed as shown in 
Figure 27. 

The module is an assembly of seven subassemblies, one of which is a 
three-dimensional matrix of ferrite magnetic cores. The other six are collec- 
tions of electronic components which “drive” the unit. The entire assembly 
is built with a connector plate for mounting in the chassis and a cover plate 
similar to the logic module. In the case of Central Storage, five modules are 
mounted in a horizontal row of a chassis, taking up the space of two rows of 
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FIGURE 27 

FIGURE 28 

logic modules. A single row of logic modules is needed to control this Central 
Storage bank. Four banks are mounted in each Central Storage chassis, as 
seen in Figure 28. 

Operation of this storage is dependent on a “square-loop” magnetic 
property of the ferrite magnetic core. A typical representation of this prop- 
erty is shown in Figure 29 (page 40). The point labeled Hc is a measure of 
the coercivity of the material. A field applied in the H direction causes the 
magnetic flux density B to change following the shape of this curve. As the 
field is increased, a point called the saturation point of the material is reached 
and labeled on the curve Bs. At this point, no amount of additional field will 
cause any change in the remanent magnetic state BR following removal of 
the field. 

It is particularly important to a coincident current 3-D storage that the 
squareness be nearly ideal. For example, the area labeled KNEE is particu- 
larly sensitive, as will be seen. This property, squareness, is sensitive to tem- 
perature and mechanical stress. Therefore, a physically protected and ther- 
mally controlled environment is necessary. 

The coincident-current method is based on the coincidence of two fields 
within a core for a READ or a WRITE operation. These fields are supplied by 
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FIGURE 29 Hysteresis loop. 
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currents flowing in two orthogonal wires passing through the toroidally 
shaped core. Depending on the direction of the current in these two wires, a 
positive or a negative field will appear a t  the core. It can be seen that a “half- 
current” will produce a “half-field’’ which can be held just below the KNEE of 
the B-H curve. Two positive half-currents will produce a full-field which will 
be substantially above the coercivity of the material as shown in the figure. 
This example also shows the resulting remanent magnetization following 
removal of a half-field and a full-field. 

It should be clear that two orthogonal wires can be made to select one 
core from a two-dimensional array. In such a case only one core at the co- 
incidence of the X line and the Y line will experience a full-field. All other 
cores on the X and Y lines will experience a half-field, while the rest of the 
cores wi l l  remain unaffected by any field. 

During a full-field condition the magnetic core will switch states, taking 
a finite time interval to accomplish the switch. This time interval is 400 
nanoseconds in the storage module for the 6600 Computer and is a function of 
the composition of the ferrite and the dimensions of the core. 

A two-dimensional array of cores is shown in Figure 30. The two or- 
thogonal wira X and Y can be seen along with three other wires passing 
through each core. A diagonal wire is a convenient means for sensing the 
voltage induced during a core switching operation and is labeled the SENSE, 
or S wire. The other orthogonal wires are included as a convenient means for 
counteracting the fields induced by the X and Y Ges.  These are labeled 
INHI BIT, or I wires, and effectively allow the array to grow from two dimen- 
sions to three. Figure 31 (page 42) diagrams the method used. 

In this diagram one X drive line and one Y drive line are shown. A 
separate inhibit line is used for each bit or layer in the third dimension, 
while the X and Y lines thread through the whole array as shown. Each 
“plane” is a two-dimensional array of 4096 bits. There is a total of twelve 
planes in a module, making up the twelve bits of word length. Bit control is 
accomplished through the X inhibit and Y inhibit wires on each plane. 

A typical readout is accomplished by pulsing the X and Y lines with 
half currents in a direction such as to produce a “positive” full-field in each of 
the twelve cores corresponding to the selected address. One can easily pre- 
dict the switching behavior of a core at a selected address for the two cases of 
interest. With a “1” previously stored in the core, a negative remanent state 
-BR exists before the readout. The full readout field causes the core to fol- 
low the B-H curve to the right and upward, finally coming to rest a t  +BR.  
The total magnetic flux change is represented by the excursion from -BR 
to +BR, resulting in a “one” signal readout on the SENSE winding. If this 
signal is sampled and stored, the WRITE cycle of the storage unit can be used 
to replace the “1” in the core. A WRITE cycle follows the READ cycle by 
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causing the X and Y lines to produce a "negative" full-field in each of the 
twelve planes, again at the selected address. The result obviously is to re- 
store the cores to their original magnetic remanent state. 

The second case of interest is found with the initial magnetic remanent 
s ta te  a t  + B R  representing a stored "zero." The positive full-field during the 
READ cycle causes very little actual flux change, resulting in a very small 
signal. During the following WRITE cycle, the INHIBIT windings are ener- 
gized by a positive half-field counteracting the effect of the full negative X-Y 
drive. This is shown in the diagram of Figure 32. 

This operation is shown in Figure 33 in the form of signal waveforms for 
drive and inhibit currents. The type of storage just described is known as 
"destructive readout" or DRO sto age because a single READ requires a fol- 
lowing RESTORE to retain the da s a. 
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STORE 

r \ I 
WRITE DRIVE 
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STORE 
FIELDS 

I 

NET FIELD (STORE "ZERO") 

NET FIELD (STORE "ONE") 

FIGURE 32 Read and store. 

All storage modules in the Central Storage and in the Peripheral Proc- 
essors utilize an identical cycle. This cycle is controlled by a sequence con- 
trol for each Central Storage bank and by the Peripheral Timing Control 
to be described in a later chapter. Two types of Storage References can be 
made, a READ/RESTORE and a CLEAR/STORE with a special EXCHANGE 

- 

650s 
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reference to be described later. In any case, a full 1000 nanoseconds are 
always used for any reference. 

The storage module block diagram of Figure 34 shows the logic needed. 
From this block diagram it can be seen that data can be read out and new 
data stored in a given address in one cycle. In the case of Central Storage, 
five Storage Modules are used with a single address and with a 60-bit Z reg- 
ister and 60 sense amplifiers. 
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FIGURE 34 

B. THEORY OF INTERLEAVED STORAGE 

It has not been possible to construct an economically reasonable single- 
level central storage. There is also a limit on size versus performance, aris- 
ing from the proportion of time spent getting to and from storage as against 
the time of a storage reference within the unit itself. 

Both cost and performance combine to force a system of primary and 
secondary storage; in other words, a hierarchy. 

In  the following discussion of an optimum solution to the storage system 
organization, it is well to remember that the solution must hold for the whole 
system. A denial of the existence of the hierarchy can be countered by the 
realization that small central storage can be very fast, but large cannot. Ob- 
viously, either the central storage will be too small at one extreme or too slow 
a t  the other. 

TRANSFER BETWEEN LEVELS 

With a beginning assumption of only two levels of storage hierarchy, a 
first consideration is the transfer b&ween the two levels. Unquestionably 

the two levels will have different properties with the advantage going to per- 
formance (speed) at the higher level and with the advantage going to cost a t  
the lower level. I t  should be clear that this will produce a secondary level 
module much larger than the primary level. 

Assuming the secondary storage is a rotating device such as a magnetic 
drum or disk, there are other differences in properties between levels. The 
secondary storage will have three types of timing considerations related to 
the transfer of data between levels. These are listed here. 

1. Positioning time-this refers to any mechanical action to place the recording or 

2. Latency time-assuming a rotating mechanism, this refers to a portion of one 

3. Transfer rate-this refers to the rate of transferring data to or from the storage 

reading head on the desired track. 

rotation to reach the desired angular position on the track. 

unit. 

As positioning and latency time get very large, a number of strategies 
Such strategies can must be employed to prevent major inefficiencies. 

include: 

1. a number of independent secondary storages to overlap positioning times; 
2. queuing methods to take advantage of transferring between levels on the basis 

3. insertion of an intermediate level of storage to smooth the secondary storage 

4. adoption of a time-shared usage of the central processor in the hope of provid- 

of whatever is “closest”; 

traffic; 

ing job overlap. 

The optimum choice of strategy is extremely dependent on the type of 
job or jobs being executed and the size of the transfers between levels. It 
should be apparent that as the secondary references become more random as 
to position, the first strategy above of independent secondary storages be- 
comes more necessary. 

The transfer rate of data flowing between levels should be balanced with 
the type of secondary storage used. However, as the queuing strategy or 
time-shared technique improves, the transfer rate becomes quite important. 
See Chapter VII for Disk Storage Unit. 

PRIMARY STORAGE 

At the top of the storage hierarchy the question of the optimization is 
very complex. This storage must provide peak performance with the proc- 
essor; it must provide for the transfer to and from the secondary storage with 
minimum loss to the processing job; it must provide for the data transfers to 
and from the external devices. 

Looking a t  the processor performance first, a major limitation is the 
time taken in the transfer of each operand or result between the processor 
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and the primary storage. Assuming the processor can be infinitely fast, 
each storage reference required in the process can cost a storage cycle time. 

It is obvious that one should attempt to reduce the number of actual 
references to storage. Some possible strategies would be: 

1. take more data per reference in the hope that more than one element of data 
can be used; 

2. utilize a small scratch pad memory for intermediate or partial results of compu- 
tation which need not transfer between the processor and storage; 

3. remove extraneous references to storage for the housekeeping associated with 
the processor program, either by microprograms with the scratch pad or by spe- 
cial instruction hardware. 

The necessary references to storage from the processor may be aided by 
other strategies. 

Split primary storage into independent units, each servicing a separate 
processor. 
Split primary storage and provide overlap conditions to hide portions of the 
storage cycle. 
Interleave many banks of primary storage in order to increase the speed of 
“burst” transfers between the processor and storage, and between levels of 
storage. 

For random referencing of primary storage and with the ability to ac- 
complish an overlap, the more independent banks of storage the better. Of 
course, as the number of banks increases, the processor speed can decrease 
due to increased line length and increased distribution and switching logic. 

For burst transfers between the processor and storage a reasonable 
assumption can be made that the transfer is made on a series of consecutive 
addresses. In that case, many banks of storage with the ordering of consecu- 
tive addresses assigned to consecutive banks is a possibility, such as: 

Word Address - Bank 

- 
6713 
6714 
6715 
- 

- 
3 
4 
5 
- 

This sort of interleaving is not incompatible with random referencing 
requirements since all that is needed then is many banks without special 
regard to addressing order., 

SYNCHRONISM 

In a primary storage system two methods may be employed to connect 
each storage unit, namely, synchronous connection and asynchronous con- 
nection. The synchronous connection provides a clock line between all units 
and specifies a fixed time interval for control and data transfer events. The 
asynchronous connection requires no clock line and does not specify a time 
interval. 

The advantage of the asynchronous connection falls in the category of 
modularity, or simple expansion, without regard to distance or other time 
variables. 

If no attempt is made to overlap storage operations, or if overlap is 
limited to Read and Store overlap, then the asynchronous technique has the 
flexibility advantage. However, as any attempt is made to increase the 
overlap, the timing uncertainty of the asynchronous connection is an 
obstacle. 

SYNCHRONOUS OVERLAP 

The following describes a method of connecting a number of banks of 
storage in an interleaved synchronous manner to achieve a high burst rate 
and a high degree of random overlap. Assume these properties: 

1. a Read-Store reference takes one MAJOR CYCLE; 
2. the storage bus can transfer one word in one MINOR CYCLE; 
3. storage accessing agent can deliver a new address every minor cycle; 
4. after the address is delivered, a data word will be transferred after a fixed num- 

ber of minor cycles. 

The storage system can now take advantage of the predictable nature 
of the synchronous connection. Many storage references can be made a t  
minor cycle intervals with the resultant data transfer a t  fixed following inter- 
vals. Conflict in the use of a storage unit can be detected in a predictable 
manner in advance of actual data transfer. The strategy to be employed in 
the presence of a conflict may vary with the kind of reference. 

This method of overlap is entirely legitimate for random references and 
for mixing several referencing units. It is also very powerful for burst trans- 
fers where a single control instruction can set up a stream of data with data 
words transferring a t  minor cycle intervals. 

C. STUNT BOX 

Based on a synchronous interleaved storage system as described above, 
the 6600 Computer makes use of its high degree of overlap. The mechanism 
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for referencing control storage is called the STUNT BOX. This unit is shown 
in block diagram form in Figure 35. 

The STUNT BOX contains three main parts: 

hopper, - priority network, 
* tag generator and distributor. 

The hopper is an assembly of registers used to retain storage reference 
information until any storage conflicts are resolved. In principle this allows 
a new storage address to be delivered every minor cycle with any “rejected” 
addresses to be reissued repeatedly until accepted. 

Assuming an empty hopper, a storage address is entered in register M1 
from one of the sources, the Central Processor or Peripheral Processors. This 
entry is made under control of the priority network, with the time of entry 
a t  tOO. As described in a previous chapter, this time is the leading edge of a 
25-nanosecond clock pulse and is repeated every minor cycle, or 100 nano- 

L 

seconds. At  the time of this entry a set of tags is also entered, which fully 
identify the nature of that particular storage reference. The storage address 
is sent immediately to the storage units on the storage address bus, a t  clock 
time t25. 

The hopper is designed to allow the information entered in register M1 
to circulate through the other registers and return to M1. A 75-nanosecond 
time interval exists between each register which results in a total recircula- 
tion time of 300 nanoseconds. For example: 

tOO -Enter M1 
t25 -Address to Storage Address Bus 
t75 - M 1  to M4 
t150-M4 to M3 
t225-M3 to M 2  
t300-M2 to M 1  (if not accepted) 

In each storage bank the lower five bits of the address are examined for 
a match. If the bank whose number matches is not busy, an ACCEPT signal 
is returned on the ACCEPT Bus to the Stunt Box. This indicates that no 
conflict exists, and the storage cycle has been initiated in the bank. The 
ACCEPT signal reaches the Stunt Box in time to disable the path from M2 to 
M 1  and to remove that entry from the priority network. As a result, a new 
address may be entered. If, however, the selected storage bank was busy, no 
ACCEPT signal would be sent. In that case, the priority network gives top 
priority to the recirculation path, thereby causing new addresses to be held 
up for one minor cycle. It should be obvious that the hopper can hold three 
addresses recirculating, effectively blocking any new addresses. As each re- 
circulating address is accepted, a new address can be entered. 

This method of handling storage accesses has the considerable value of 
preventing unnecessary bottlenecks. One source of addresses will not block 
another source except as each may call for the same storage bank. Knowing 
the recirculation time of 300 nanoseconds and the storage cycle time of 1000 
nanoseconds, an interesting case is a series of consecutive references to the 
same bank. Shown in Figure 36 is a worst-case condition of references filling 

TIME (MAJOR CYCLES) 

REFERENCE 1 

REFERENCE 2 

REFERENCE 3 

REFERENCE 4 

X INDICATES A RETRY 

FIGURE 36 
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the hopper and being recirculated out of order. The maximum case is shown 
for reference 2 which was delayed by two major cycles. Note that each re-try 
by reference 2 prevents any new address from making the delay any longer. 

points up a fact about this mechanism, that holding three entries rather 
than two, four, or more, d l  prevent “permanent” recirculation. 

The priority network includes several address sources under the central 
processor and the peripheral processor headings. From the central proces- 
sor, two classes of storage reference are seen : 

1. instruction fetch, and 
2. read and store operands. 

Instruction addresses are obtained from the central processor program 
address register (P), whereas read or store operand addresses are obtained 
from one of two INCREMENT functional units. In the case of simultaneous 
references from these two classes, priority is given to the operand address. 
When one of these is entered into register MO (see Figure 35), a request for 
priority 2 is made in the priority network. The priority network also ac- 
counts for the presence of a recirculation priority, rejects for mixed read and 
write in the hopper, and also rejects for out-of-bounds address. 

The mixed read and write reject is a special case for the central proces- 
sor references in order to prevent the out-of-order recirculation properties of 
the Stunt BOX from causing out-of-order operations on a single storage 
location. 

The out-of-bounds address is determined by testing the address in reg- 
ister MO against the field length (FL) which is established for each program 
by the operating system. Also, note that each central processor address is 
increased by the reference address (RA) also supplied by the operating sys- 
tem. These will be described in more detail in later chapters. 

In  summary, the priority #2 for central processor references is made 
up of 

1. address in MO, AND 
2. no recirculation requirement, AND 
3. no mixed read and write, AND 
4. address in MO less than FL. 

,Similarly, the peripheral processor addresses are entered from several 
sources. There are, of course, ten PPU’s of which only one can reference the 
Central Storage at  one time. The reference from the PPU is also one of three 
types, a read central, write central, or initiate exchange. This last causes the 
central processor to halt and perform an exchange of the contents of its reg- 
isters with a sixteen-word storage block beginning a t  the address specified by 
the PPU. 

PPU reads and writes are handled as  individual 60-bit word references 
requiring an address each. For the Exchange, however, only the starting 
address of the exchange jump package is entered. A counter (exchange ad- 

dress counter EAK) is used for the remaining storage addresses. This 
counter is placed in the address path from the PPU’s to the Stunt Box for 
convenience and is deactivated for reads and writes. 

The tag generator is designed around a six-bit tag. Three bits are used 
to identify registers for the exchange jump and central read or write. The 
other bits are assigned to control, read, write, or exchange for the various 
sources. Table I11 shows the net combination, using two octal digits for the 
six-bit tags. 

00 
10 
11 
12 
13 
14 
15 
40 
50 
56 
57 
60 
61 
62 

TABLE I l l  

Peripheral READ 
CPU-instruction fetch 
CPU read to X 1  
CPU read to X2 
CPU read to X 3  
CPU read to X4 
CPU read to X 5  
Peripheral Write 
Return Jump or Error Stop 
CPU write X6 
CPU write X7 
Exchange P, A 0  
Exchange RA, A l ,  B1 
Exchange FL, A2, 82 

Hopper Tags 

63 Exchange EM, A 3 ,  83 
64 
65 
66 Exchange A6, 86 
67 Exchange A7, B7 
70 Exchange XO 
71 Exchange X 1  
72 Exchange X2 
73 Exchange X 3  
74 Exchange X4 
75 Exchange X 5  
76 Exchange X 6  
77 Exchange X7 

Exchange RA ecs, A 4 ,  B4 
Exchange FL ecs, A 5 ,  B 5  

These tags are circulated with the addresses in the hopper with tags 
distributed into control logic as needed. Some tags initiate operations which 
are independent of the ACCEPT. Other operations which are dependent on 
the ACCEPT are initiated by delayed copies of the tags. Therefore, once in 
the Stunt Box each address tends to control itself. 

D. STORAGE BUS SYSTEM 

Central Storage in the Control Data 6600 is constructed on eight inde- 
pendent chassis, necessitating a distribution system. Some discussion was 
given earlier about the Storage Address Bus. In actuality, the Stunt Box 
delivers addresses directly to each of the eight chassis. Each chassis contains 
four banks of 4096 60-bit words. In the case of a 65,536 word central storage, 
only four chassis are used, and the distribution system is accordingly reduced. 

A comprehensive block diagram of the storage data distribution system 
is given in Figure 37 (page 52). 

Since there are several sources and destinations for the Central Storage 
references and since there are physically independent banks of central stor- 
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age, two distributors are needed. These represent intermediate points for 
concentrating and distributing between sources and destinations. 

When a PPU reference to Central Storage is made, the address is de- 
livered to the Stunt Box. If the reference is a Write Central, the 60-bit word 
to be stored is held in a register associated with the Write Distributor. When 
that reference is accepted, the tag associated with the address in the Stunt 
Box hopper causes the data word to be transmitted through the Write Dis- 
tributor to Central Storage. Other references are similarly handled. 

Data words transfer through this system in such a way that a word to be 
stored arrives a t  the chassis just after the word read out of the address has 
been transmitted. This can be seen in Figure 38. 

It is possible to transfer data in each direction through this system, an 
essential for the Exchange operation. Since it takes a finite time to move 
data words through the write distributor and the read distributor, the con- 
trols derived from the Stunt Box tags are spaced out in time over a wide 
interval. 

Looking a t  the read-restore “loop” of a storage bank, it can be seen that 
data words are read out to the Z register and then to the common distribution 
register. The data word to be restored is then returned to the Z register. 
This operation is somewhat artificial since the Z register already has the data 
word. However, this is a convenient control procedure. Data read out of 
any of the four banks is transmitted on the READ Bus on all storage refer- 
ences. All eight chassis are connected to the Read Distributor which, in turn, 
transmits to the correct destination. In the case of a STORE operation, the 
readout data is effectively dropped at  the Read Distributor. 

E. EXTENDED CORE STORAGE 

Following the ideas expressed in an earlier section, the Extended Core 
Storage is inserted in the Storage hierarchy to “smooth” the traffic between 
storage levels. The connection is direct “core to core” for maximum transfer 
rate. The CPU contains two instructions for transferring between Central 
Storage and Extended Core Storage, one for READ, and one for STORE. The 
CPU may direct a transfer of any number of 60-bit words from one to the 
maximum permitted by field length assignments. Extended Core Storage 
addresses in the CPU are relocated by a reference address (RA ecs) similar 
to, but separate from, the reference address for Central Storage. Also, a 
field length (FL ecs) is assigned by the operating system. These provide a 
powerful mechanism for relocation and protection in both levels of storage. 
For descriptive purposes, these are shown in Figure 39. 

The CPU addresses in a relative space starting at  zero for both storages. 

RELATIVE ABSOLUTE 
ADDRESS ADDRESS 

- RAecs 

FIELD 
LENGTH (ECSI 

(FLecs) 

I- FIELD 
LENGTH 

(FL) 

I I I  CENTRAL STORAGE 

READ BUS WRITE BUS 

FIGURE 38 FIGURE 39 
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The two relative addresses are added by hardware a t  the time of a reference. 
A test of the address against the appropriate field length is also made a t  the 
time of a reference. No out-of-bounds references are allowed. 

The Extended Core Storage is a linear-select 2-D magnetic core unit. 
Th& is a very large unit in terms of the number of bits in one bank. Although 
the read-write cycle time is over three times that of the central storage, the 
longer word length more than offsets, a t  least for block transfers. The block 
diagram of Figure 40 shows the ECS unit as two dimensional, with the word 
dimension of 488 bits, including 8 parity, and number of words equaling 
15,744. 

For purposes of separate identification, the 480-bit word is called a 
super-word, or sword. Note that the sword is disassembled for transfers to 
the 60-bit word used in Central Storage. For this operation the address 
received from the controller contains three lower order bits to identify one 
of the 60-bit words. 

A typical block transfer can begin and end a t  any 60-bit word. How- 
ever, because the nature of the transfer is a variable length block which 
usually contains more than one word, it is unnecessary to deliver an address 
for each 60-bit word. It is, in fact, convenient to deliver addresses only for 
swords. A “passive” form of control at the Extended Core Storage unit is 
used to transfer blocks. The initial word address causes the unit to reference 
the correct sword and assembles (disassembles) starting a t  the correct word 
within the sword. The assembly (disassembly) proceeds to the end of that 
sword in ascending word addresses. The next word address delivered to the 
unit will specify the first word in the next consecutive sword. This process 
continues until the last sword is referenced. This last reference includes 
assembly (disassembly) only to the last word specified. 

170 471 172 173 
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Banks of ECS may be interleaved in a manner similar to Central Stor- 
age. A typical block transfer is diagrammed in Figure 41, showing the inter- 
leaving and the beginning and ending cases. 

SWORD ADDRESS 

BLOCK TRANSFER 
STARTS AT WORD ADDRESS V058 
WITH LENGTH 558 

FIGURE 41 

With four interleaved banks it is possible to achieve a time overlap. 
For a transfer rate equal to the maximum rate of Central Storage, one 60-bit 
word must transfer every minor cycle, or 100 nanoseconds. Each ECS unit 
requires a 3200-nanosecond cycle, moving eight 60-bit words. Therefore, 
four banks can be made to move thirty-two words in the time of one storage 
cycle. To accomplish this, one bank is initiated every 800 nanoseconds. 

F. ECS COUPLER AND CONTROLLER 

To accomplish the connection of Extended Core Storage to Central 
Storage, two units are needed. The ECS Controller allows up to four 6600 
Computers to be connected. Each 6600 Computer requires an ECS Coupler. 
See Figure 42. 

COMPUTER k 
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The ECS Coupler can be thought of as a functional unit of the 6600 
CpU. However, no attempt is made to allow concurrent operation between 
it and other functions. In fact, any continuous transfer requires complete 
control over Central Storage. The CPU provides three items of data to 
perform the transfer. 

. Initial Central Storage Address 
Initial Extended Core Storage Address 
Length of Transfer 

From this initial data the ECS Coupler forms a continuous stream of 
Central Storage addresses and Extended Core Storage addresses, subject 
only to conflicts from other accesses to ECS and to PPU accesses to Central 
Storage. The ECS coupler allows such interruptions to occur a t  ECS sword 
boundaries. This is convenient for multiple access to ECS, each access 
channel effectively getting a sword a t  a time. In the case of an Exchange 
Jump Interrupt, the transfer is aborted a t  the next sword address. 

The ECS Coupler includes counters which increment Central Storage 
and ECS addresses and the block length to zero. At the beginning of a block 
transfer, the block length is tested against the ECS bounds protection FL em. 
If this boundary is exceeded, the operation is aborted. Also, a t  the beginning 
the relative address RA ecs is added to the ECS address from the CPU to 
form the absolute initial address. From then on, the absolute address is 
used by the Coupler for ECS. The Central Storage relative address and 
bounds test is, of course, taken care of by the Stunt Box. Therefore, the 
ECS Coupler delivers addresses to the Stunt Box in the same relative manner 
as the CPU. 

The ECS Controller provides access to four 6600 Computers. Each 
access channel is serviced on a round-robin basis. A scanner in the Controller 
tests requests each 800 nanoseconds to determine the next “user.” If only 
one channel is active, the scanner is able to keep the total transfer rate a t  
maximum. If, however, more than one channel is active, the rate per channel 
is reduced accordingly. This reduction is affected by the kind of bank con- 
flict introduced. 

CENTRAL PROCESSOR 
FUNCTIONAL UNITS 

The central premise of the design of the Control Data 6600 is called 
“functional parallelism.” Particularly in the Central Processor (CPU), this 
idea is essential to the design. 

In special purpose digital devices hardware can be included to perform 
the necessary “housekeeping” tasks. By the use of this hardware, such tasks 
are eliminated from the apparent time to complete execution, since they are 
performed in parallel with the main functions being executed. The case is 
usually very specialized, however. This valuable technique can be applied 
to general purpose computers by including several independent functional 
units. Some of the units may be regarded as “housekeeping” units; others 
are the main processing units. 

The 6600 Computer depends on the existence of separate functional 
units in the CPU for this kind of facility. Special purpose instructions are 
unnecessary to a great extent in this type of organization. Specialized 
handling of the control over the separate functions can, in theory, separate 
the critical path functions from the extras. In later sections examples will 
be given of the detailed effect of this type of control. In any event, the fact 
remains that some independence of function is necessary. 

Ten functional units make up the arithmetic portion of the 6600 Central 
Processor. These are: 

Booleanunit 
Shift Unit 
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3 3 3 3 3  

BOOLEAN UNIT 59 

3 3 3 3  18 30 bit 

Fixed Add 
Floating Add 
Multiply (2) 
Divide 
Increment (2) 
Branch 

Two identical units are provided for the Multiply and Increment func- 
The logical properties of these units are given in the tions for emphasis. 

block diagram of Figure 43. 
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The operation is generally three address in nature, with some excep- 
tions. When both operands are available in the CPU Registers, the input 
operands are transferred to the functional unit. On completion, the result is 
temporarily deposited in a result register. The control system is responsible 
for removing this result, transferring i t  to the CPU Registers, and releasing 
the functional unit. 

Because the functional units are essentially separate and independent, 
the design of each unit can be quite specific and optimum. The selection of 
functions and the properties of each function are consistent with this in- 
dependence. Total time for a function includes the “extra” minor cycle to 
send a result to the CPU registers and through to a point on the register out- 
put bus. 

Instruction formats within the Central Processor are 15 bit and 30 bit 
as shown on page 59. 

The 15-bit format is the principal one used, which is testimony to the 
value of the CPU registers. While past computers utilized a single “accumu- 
lator” register to good advantage, the instruction required a storage address 
similar to the K field shown. This caused inefficiencies in two ways, if not 

F m i j k  

15 bit 

Where F-denotes the major class of function, 
m-denotes a mode within the functional unit, 

i-identifies one of eight registers within the proper group of X, 8, or A registers, 
j-identifies one of eight registers within the proper group, 
k-identifies one of eight registers within the proper group, 
K-an 18-bit immediate field used as a constant or Branch destination. 

more. A first, and obvious, inefficiency was the length of the instruction 
word itself, using storage space and time to fetch. A second inefficiency was 
the use of single-address procedures, implying the single accumulator reg- 
ister. Going beyond single-address, of course, makes the instruction length 
even worse. 

With the introduction of additional CPU registers, the problems of 
instruction length and of single-address technique are removed. The 6600 
Central Processor can utilize a very efficient three-address scheme, as shown, 
with very short instructions. 

Although each register designator, i, j, and k, refers to one of eight 
registers; the function F controls the proper class of register. Three classes 
are included, as follows: 

X 60-bit Operand Registers 8 used. 
B 18-bit Index Registers 8 used. 
A 18-bit Address Registers 8 used. 

The X registers are the principal transient registers for data words 
within the Central Processor. Binary fixed-point numbers, floating-point 
numbers, packed alphanumeric data, and so on are handled through the 
X registers. In general, data words enter a specific X register from Central 
Storage; they are operated on by functional units and are finally returned to 
Central Storage from a specific X register. 

The 18-bit Address registers control the Central Storage references and 
can be indexed by appropriate use of the 1Sbit Index registers. The Index 
registers are also convenient for fixed-point integers, floating-point exponent 
manipulation, control of shifts, and so on. 

A. BOOLEAN UNIT 
Of all the functional units, the Boolean unit is the simplest and easiest 

to describe. This is, of course, the logical unit, performing the fundamental 
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logical operations defined in Boolean algebra. Eight functions are provided 
as described in the list of instructions below. Note that the total instruction 
list is provided in Appendix A. 

10 Transfer Xi to Xi. 
11 
12 
13 

Logical Product of Xj and Xk to Xi. 
Logical Sum of Xi and Xk to Xi. 
Logical Difference of Xj and Xk to Xi. 

14 
15 
16 
17 

Transfer Xk complement to Xi. 
Logical Product of Xj and Xk complement to Xi. 
Logical Sum of Xj and Xk complement to Xi. 
Logical Difference of Xi and Xk complement to Xi. 

These instructions describe the logical functions operating on input 
operands Xj and Xk with the result going to Xi. These operands and the 
result are held in the CPU Registers of 60-bit word length, identified as the 
X Registers. The subscript identification i, j ,  or k refers to a designator 
field in the instruction referring to the correct register. 

The terms “Logical Sum,” “Logical Product,” and “Logical Difference” 
refer to the following. 

Logical Sum Inclusive OR 
Logical Product AND 
Logical Difference Exclusive OR 

The Boolean Unit requires 300 nanoseconds, or three minor cycles 
from the time input operands are sampled, until the result is available in 
the CPU Registers for sampling by another functional unit. This is a mini- 
mum case and may be longer if the result is held up because of other use of 
the result register. 

A detailed block diagram is shown in Figure 44. 
Operands are entered in input registers, the data coming from Xj and 

Xk registers. Five control bits are stored in the Boolean unit at the time of 
ISSUE, essentially preparing it for the desired operation. The Scoreboard 
unit determines when the operands are sent to the unit and sends a GO 
BOOLEAN signal. This signal enters the operands into the unit, performing 
a complement as necessary. The complement is the Boolean NOT and is 
only required on the Xk entry path. 

Once the data operands are entered, a period of time dependent on the 
“distance” through the network is required before the result can be stored. 
This time is shown as 125 nanoseconds in Figure 44. The “request release” 
signal is sent to the SCOREBOARD a t  a time sutliciently early in the unit’s 
operation to allow a GO TRANSMIT signal to return just after the result has 
been stored in the temporary result register. This timing is such that the 
request is sent before the input operands arrive a t  the Boolean unit! 

A detailed logic diagram for one bit is shown in Figure 45. The Boolean 
unit is mounted in one chassis (number two) and utilizes four types of logic 
module, excluding control. Data enters an input register from the coaxial 
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FIGURE 44 The Boolean functional unit. 
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Code 

10 

11 

12 

13 

14 

15 

16 

17 

FIXED ADD UNIT 63 

Name Function 

TRANSMIT X j 4 X i  

LOGICAL 
PRODUCT Xj*Xk 

LOGICAL 
SUM Xj + Xk 

LOGICAL 
DIFFERENCE Xj - Xk 

TRANSMIT Xk-+Xi 

LOG I CAL 
PRODUCT X j - x k  

LOGICAL 
SUM Xj + X k  
LOGICAL 
DIFFERENCE Xj -%  

- 

cable in the form of a 25-nanosecond pulse. Mode bits have been established 
in advance of this time. Therefore, the network following these input reg- 
isters will react to the data entering. This forms a stable result as an output 
of the GB module by the time delayed GO BOOLEAN samples the result into 
the result register. 

The control signals are steady signals with the exception of the GO 
BOOLEAN, TRANSMIT, and the CLEAR REGISTER signals. The complement 
signal enters the GA modules, forming the control terms B and C. B selects 
the true output, and C selects the complement output; the result is OR’ed 
and sent to  the Boolean Network Module GB. Four control signals are 
used to control the network module. These signals are shown in derived 
form in Table IV. 

TABLE I V  Boolean Functional Unit Reference Chart 

The network in module GB is an excellent example of the intimate 
design relationship of circuit ground rules and logic. The output of the GB 
module can be the AND of the inputs, the inclusive OR, the exclusive OR, or 
a selection of one input. Control is accomplished by the four terms A, 6,  C, 
or D. Combinations of these controls provide for these outputs. Control of 
the complement of input operand Xk is accomplished on GA. 

The logic is split between the modules in order to gain an optimum use 
of pins, module types, and especially to gain the maximum load on control 

terms. For example, the GA module actually contains four bits of one 
operand, either Xi or Xk. Therefore, the loads on the control terms A, C, D, 
and E are four each, one less than the ground rule limit. However, the load 
on control term B is five, or the limit. 

An additional limit is the number of transistors per module, a nominal 
maximum of 64. By counting arrowheads on a GA module in the diagram of 
Figure 45, it can be seen that fourteen transistors per bit plus five transistors 
for control are required, totaling 61. Pin count on this module is three per 
bit plus four control, totaling 16 and not even coming close to the maximum 
of 28. 

With the same kind of constraint on the GB module, only three bits of 
network are contained on each. The transistor count of 18 per bit and four 
control totals 58. 

B. FIXED ADD UNIT 

The Fixed Add Unit is the next in ascending order of complexity. The 
unit is an integer arithmetic unit which performs one’s-complement fixed- 
point addition or subtraction on 60-bit numbers. The one’s-complement 
representation of binary numbers refers to the treatment of negative num- 
bers. The sign bit is the left-most, or most significant bit of the number. If 
the sign bit is zero, the number is considered positive with its binary point 
just to the right of the least significant bit. If the sign bit is one, the number 
is considered negative with similar binary point placement and with each 
“zero” acting as a “one” does in the positive case. This can be charted as in 
Figure 46. 

/ 
INTEGER IOoi 1011 1101 1iil-006! ooii oio1 0111 BINARY 
VALUE I 1000 ! 1010 ! 1100 ’ ’ lllOrOOOO ’ 0010 0100 o(10 REPRESENTATION 

FIGURE 46 

This chart is made for a register length of only four bits but shows the 
condition of a positive and negative zero representation. 

The Fixed Add Unit uses a scheme of parallel addition which forms all 
bits of the sum simultaneously. To explain the technique, consider a six-bit 
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add unit operating as a serial adder. One can construct a set of equations 
describing the step-by-step results of addition. 

Sum n = AnBnh + AnBncn + AnBnCn + AnBnCn, 

where An = 1st operand bit n, 
Bn = 2nd operand bit n, 
Cn = Carry entering the nth bit. 

Note that one’s complement arithmetic requires an “end-around” carry 
from the most significant bit to the least significant. In bit serial adders 
this, therefore, requires another pass through the adder. 

(V-2) Carry n + 1 = AnBnen + AnBnCn + AnBnCn + AnBnCn. 

Simplifying these two equations, 

Sum n = (An @ Bn) @ Cn, 

where 0 is the symbol for Exclusive OR. 

Carry n + 1 = AnBn + (An + Bn)Cn. (V-4) 

Of interest is the case of the sum of + 1  and -1, using the above 
equations. 

A = 0 0 0  0 0 1  +1 
B = l l l  1 1 0  -1 

Carryn+ 1 = O  0 0 0 0 0 

S u m n = 1 1 1  1 1 1  

This is, of course, the “negative” zero and is a perfectly correct answer. 
It makes, however, for difficulty in interpretation and in conversion to dis- 
play code or print code. This negative zero arises from the choice above of 
an “additive” type of adder. To produce a “positive” zero result i t  is neces- 
sary to  construct a “subtractive” type of adder. To show this type a similar 
set of equations is given below. 

_ _ -  
Sum n = XnYnBn + XnYnBn + XnYnBn + XnYnBn, (V-5) 

where Xn = 1st operand bit n 
Yn = 2nd operand bit n 
Bn = Borrow entering bit n 

(‘4-6) Borrow n + 1 = XnhBn + XnYnBn + XnYnBn +XnYnBn 

Simplifying these equations, 

Sum n = (X @ Y) @ Bn (V-7) 
Borrow n + 1 = XnYn + (Xn + h ) B n  (V-8) 

Now, taking the same case as above, 

x = o o o  0 0 1  +1 
Y = l l l  1 1 0  -1 

Borrow n + 1 = 0 0 0 0 0 0 
Sum = o o o  0 0 0  

The result is a more natural and convenient form. Note that only one 
combination of operands to such a “subtractive” adder will produce a nega- 
tive zero, that is, two negative zeros as input. This complication of one’s 
complement arithmetic is belabored here because of the need to test for the 
zero case simply. 

The above exercise is given as a preparation for the discussion of the 
parallel network used in the Fixed Add unit. A parallel network can be 
made to act in the same manner as indicated in the above exercise. Again 
taking a six-bit case, the following series can be formed. 

Sum n = (xn Yn) @ Bn (V-9) 
Borrow n + 1 = XnYn + (Xn + Yn)Bn (V-10) 

Forming Borrows in groups of three, 

To close this six-bit adder for one’s-complement use, B6 is made equal 
to Bo. Examination of the logic of the add network derived above will show 
that no insoluble cases exist. 

For the purpose of clarity, the logical terms above on the right-hand 
sides which do not include a B term are defined as Borrow Generation terms. 
The logical terms which AND with a B term are called Borrow Pass terms. 
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For example, 

6 5  = X474 + X 3 7 3 6 4  + 74) + (% + 73)(T74 + 7 4 P 4  

Borrow Generator Borrow Pass 

It should be evident that all Borrow Generate and Borrow Pass terms 
can be simultaneously solved. However, the Borrow terms themselves must 
wait for these. For the description of this portion of the Fixed Add Unit with 
some detail, see Figure 47. 

This drawing simplifies the discussion by showing the “interface” in- 
formation passing from module to module within the Fixed Add Unit. Al- 
though only six bits were defined, it is a straightforward exercise to develop 
the completed network. 

Operands X and Y refer to the two input operands to the unit. Groups 
of three bits each are entered into each FA module. 

1. X O Y O  + &is0 

2. XOYO (Inverted) 
3. XOVO (Inverted) 

5. X171 (Inverted) 
4. X l Y l  + XlVl 

6. X2Yz + X2Y2 

7. (Xo + 7O)(Xl + VI@Z + 72) 
8. 3272 + XiVI(X2 -+ Vz) + XoTo(X1 + 71)(X2 + Y2) 

The first six of these are wired directly to a “companion” FE module to 
complete the local portion of the network. Item 7 is called the Borrow Pass 
for the three-bit group. Item 8 is correspondingly called the Borrow Genera- 
tion from this three-bit group. 

Four groups of three-bit combinations are handled within the FB 
module. Similarly, five sections of such groups are combined in the FD 
module to complete the borrow logic for all 60 bits. Summarizing the usage 
of these modules: 

Module FA-20 used-contains three bits each of input operands X and Y; 
Module FB-5 used-combines intermediate borrow logic for each section of 

Module FC-1 used-combines intermediate borrow pass terms; 
Module FD-4 used-combines borrow logic for the sections; 
Module FE-20 used-completes the sum and borrow logic to form the result for 

twelve bits; 

three bits each. 

This add network illustrates the case of multiple paths through a net- 
work with different “lengths.” For example, the longest path in Figure 47 
requires sixteen inversions, not including the input flip-flop. Similarly, the 
shortest path is only five inversions, again not including the input flip-flop. 

FB 
BORROW AND PASS LOGIC INTERMEDIATE PATH , 

I 
I 
I 

I 
I 
IBORROW  PASS 
I I 

) X,Y, +Z2Y2-----+ 

X,Y, +R,T------- -4 CONTAINS 
SIX BITS 
OF INPUT 

U 

FIGURE 47 

A number of intermediate lengths can be seen in the network also. In the 
case of the Fixed Add Unit, the differing path lengths cause no difficulty be- 
cause the input registers are held stable until all paths are stable. 

The block diagram of the Fixed Add Unit is given in Figure 48. In this 
unit, no temporary result register is needed because the input registers serve 
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FIGURE 48 Long add unit-block diagram. 

no other function and can be held stable until the result is sent direct to the 
CPU register. 

Only two CPU instructions are executed by the Fixed Add Unit. 

36 

37 

Integer Sum of Xj and Xk to Xi. 

Integer Difference of Xj and Xk to Xi. 

These two operations are performed on 60-bit quantities. The Integer 
Difference is accomplished by loading the complement of register Xk into one 
of the Unit input registers. 

The Fixed Add Unit is also utilized as a “partner” to the Branch unit 
for conditional tests of selected X registers, as follows. 

Conditional Branch Instructions on Xj 

030 Go to K if Xi = 0 
031 Go to K if Xj # O  
032 Go to K if Xj is positive 
033 Go to K if Xj is negative 

034 Go to K if Xj is in range 
035 Go to K if Xj is out of range 
036 Go to K if Xj is definite 
037 Go to K if Xi is indefinite 

These instructions will be described in more detail in Chapter VI. For 
the purpose of this discussion, only the usage of the Fixed Add Unit is of 
interest. Tests are made in the following manner. 

030 and 031-The zero tests check the full 60-bit word in Xi. Both 
“positive” and “negative” zero are considered zero in this test, 
thereby allowing use for fixed and floating point numbers. 

032 and 033-The sign tests check only the most significant bit of 
Xi, the sign bit. Tests are valid for both fixed and floating 
point numbers. 

034 and 035-The range tests check the most significant twelve 
bits of Xj  for the floating point represention of infinity. This 
is defined as 3777 (octal) for positive infinity and 4000 for nega- 
tive inhi ty ,  with all lower order bits ignored. The number in 
Xi is assumed to be a floating point number. 

036 and 037-The definite/indefinite tests check the most signifi- 
cant twelve bits of Xj  for the floating point representation of 
indefinite. This is defined as 1777 for positive indefinite and 
6000 for negative indehite, with all lower order bits ignored. 
The number in Xj is assumed to be a floating point number. 

The above tests are made during the execution of the corresponding 
Branch instruction. At the start of the Branch, both the Branch Unit and 
the Fixed Add Unit are started together, as “partners.” The Fixed Add Unit 
proceeds through its execution sequence providing only the sign tests and 
zero tests. The range and indefinite tests are performed external to the unit 
on its input bus coming from the CPU X registers, as a convenience. 

C. DATA TRUNKS 

In the preceding discussion of the Boolean and Fixed Add Units, it was 
apparent that one-third of the execution time is taken up in transferring data 
to and from the CPU registers. A considerable percentage of the CPU hard- 
ware is devoted to the data trunks for this task. To balance this hardware 
against effective performance of the functional units, several groupings are 
made as shown in Figure 49 (page 70). 

In the case of the Boolean and Fixed Add Units, there are two 60-bit 
input trunks and one 60-bit result trunk. Three independent trunks are in- 
volved insofar as the CPU registers are concerned. These trunks are de- 
signed to allow simultaneous traffic on all four sets of trunks as shown in 
Figure 49. This means that two input operands may transfer to a selected 
functional unit in each of Groups I, 11, and 111. Also, one 60-bit word may 
transfer to Central Storage for a total simultaneous readout of seven registers 
in any one minor cycle. The trunks are designed to be reused on a new selec- 
tion every minor cycle. 



70 CENTRAL PROCESSOR FUNCTIONAL UNITS 

Y 

SHIFT UNIT 71 

OPERAND 2 

DATA TRUNK OPERAND I 
I 

EXIT 5 
DNTROL 

12 
@ OPERAND 2 

DATA TRUNK 8 OPERAND I 

TiRAND I 1 ] 
OPERAND 2 ’. 1 

REAl 

VI 

@ 
DATA TRUNK 4‘ 

FIGURE 49 Data trunks. 

Going in the reverse direction, only one result is transferred from a func- 
tional unit to the CPU registers, with the special exception of the Shift Unit. 
Again each grouping can transfer a word simultaneously for a total input to 
the CPU registers of five words in any one minor cycle. 

The groupings of functional units are chosen for physical placement 
reasons as well as certain performance advantages. For example, it is an 
advantage to the ADD unit to be located in Chassis 8 in close proximity to the 
most significant bits of the X register. This convenience, however, limited 
the available space for other functional units. Note also that the Boolean 
and Divide Units are connected to the data trunks through an intermediate 
chassis on which are contained the Multiply Units. 

A further choice in the groupings relates to the level of data trunk 
traffic expected. As will be seen, the two Increment Units can cause a traffic 
of one operand on a trunk every two minor cycles. The group of Multiply 
Units and Divide Unit, excluding Boolean, can cause a traffic of one operand 
on a trunk in just over every four minor cycles. With the Boolean Unit able 
to cause one operand on a trunk every four minor cycles, this grouping nearly 
matches the Increment Unit grouping. 

The data trunks are so arranged that a result can be entered into a 

selected register and be immediately transferred on a trunk to the input of a 
functional unit, all within one minor cycle. For the purpose of describing the 
time taken by a functional unit, this minor cycle is always included. For ex- 
ample, the Boolean time is two minor cycles, starting from the input oper- 
ands, plus one minor cycle “through” the result register, for a total of three 
minor cycles. Obviously, any confict in the use of a data trunk by members 
of a group will add a minor cycle to the “loser.” To resolve conflicts, a fixed 
priority system is used in each group. These are listed in the order of de- 
scending priority within each group below. 

Read Operand Trunk Result Trunk 

Group I Divide Boolean 
Multiply I Divide 
Multiply II Multiply I 
Boolean Multiply II 

Group II Add 
Shift 
Fixed Add 

Shift 
Add 
Fixed Add 

Group Ill Increment I Increment I 
Increment I I Increment I I 

The priorities are slightly different for the Read Operand Trunk and 
the Result Trunk in deference to the level of “traffic” expected on each. 

Additional discussion of the exit and entry control of the CPU registers 
in Chapter VI will further clarify the extent of the hardware in the data 
trunks. 

D. SHIFT UNIT 

The Shift Unit performs shift, normalize, pack, unpack, and mask oper- 
ations. The execution time of normalize operations is 400 nanoseconds, or 
one minor cycle greater than the other Shift operations. Again, this time 
includes a minor cycle to store the results in the CPU registers. 

The Shift Unit is slightly different from other functional units. For ex- 
ample, the jk field of all Shift instructions is inserted in the unit directly from 
the instruction at  ISSUE time, for use in certain instructions. Also, the Shift 
Unit has two result trunks to handle the normalize and unpack instructions. 

The following instructions are listed for the Shift Unit. 

20 
21 

22 
23 

Shift Xi Left jk places 
Shift Xi Right jk places 

Shift Xk nominally Left Bj places to Xi 
Shift Xk  nominally Right Bj places to Xi 



72 CENTRAL PROCESSOR FUNCTIONAL UNITS SHIFT UNIT 73 

24 
25 

26 
27 

43 

Normalize Xk in Xi and Bj 
Round and Normalize Xk in Xi and Bj 

Unpack Xk to Xi and Bj 
Pack Xi from Xk and Bj 

Form jk  Mask in Xi 

The Shift Unit operates in a manner similar to the Boolean and Fixed 
4dd  Units. Control bits are entered in the unit a t  the time the instruction is 
issued. A timing sequence is initiated by the Scoreboard control, and results 
are held until released for transfer to the CPU registers. 

Overall operation of this unit is described as follows according to the 
instruction groups. 

20 and 21-Shift jk-These instructions shift the contents of CPU 
register Xi left or right a total of jk bit positions. The shift 
count comes directly from the jk  field of the instruction. 

Left shift is circular, such that the most significant bit is rein- 
serted a t  the least significant bit position of the word for a shift 
of one place. 

Right shift is end-off with sign extension. 

22 and 23-Shift Bj-These instructions shift the contents of CPU 
register Xk left or right, placing the result in CPU register Xi. 
Xk and Xi may be the same register. The shift count is the 
absolute magnitude of the signed number in Bj made up of the 
sign bit and the lowest order six bits. 

The direction of the shift is determined by the sign of Bj and 
the instruction. A positive sign in Bj causes the direction to be 
as ‘‘n~minally’~ stated. In other words, instruction 22 states 
Shift Xk nominally left Bj places and will cause a left circular 
shift only if Bj is positive. Similarly, instruction 23 will cause 
a right end-off shift only if Bj is positive. If Bj is negative, the 
directions will reverse. 

Note: These instructions are very convenient for scaling float- 
ing point numbers to align the binary point. For example, if 
the floating point number +067000-E11 were unpacked, the 
exponent would appear in a B register as -11 (octal). A 22 
instruction specifying the X register and the shift count in the 
B register would shift the number correctly to the right 11 bit 
positions to align the binary point to the right of the least sig- 
nificant bit, or +000067. 

Note: The floating point format is described in the next section 
of this Chapter on the ADD Unit. 

24 and 25-NORMALIZE-These instructions determine the num- 
ber of leading zeros in the coefficient of the floating point num- 
ber located in the Xk register. The number may be positive 
or negative. (For negative numbers, the count of leading ones 
is determined.) The number of leading zeroes, excluding the 
sign bit, is the correct number of left shifts to normalize the 
number. This shift count is placed in CPU register Bj and is 
also iised to control a following left shift. 

26 and 27-PACK/UNPACK-These instructions are used to sepa- 
rate or couple the elements of a floating point number. The 
exponent is found in the CPU register Bj with the coefficient in 
a CPU X register and the combination also in a CPU X 
register. 

These instructions provide a convenient means for converting 
between fixed point integers and floating point numbers. 

43-MASK-This instruction fo rm a mask in CPU register Xi. The 
six-bit quantity jk entered directly from the instruction defines 
the number of ones in the mask as counted from the highest 
order bit in register Xi. This is a simple means of forming a 
contiguous string of ones in a 60-bit word for simple masking. 
This can be followed by a left-circular shift to place it correctly 
in the word. 

. The Shift Unit contains an advanced form of parallel shifting network. 
In hde r  computers, shifting was accomplished using two registers and trans- 
ferring between them with a single-bit displacement. This form of shifting 
required a variable number of shift cycles dependent on the number of places 
to be shifted. A number of awkward schemes for minimizing the number of 
shifts have been used. Particularly in floating point addition and in normali- 
zation or alignment processes, the shift operation is a significant consumer of 
time. 

The 6600 Computer offered an opportunity, in its framework of separate 
functional units, to provide a shift apparatus which would not be variable in 
time. The principle of operation is based on six columns of logic, each column 
controlled by one of the bits of shift count. If the shift count bit is zero, the 
entire column is transferred “straight through” to the next column. If the 
shift count bit is one, the entire column is transferred to the next column, 
displaced by an amount corresponding to the specific weight or bit of shift 
count. This is shown graphically in Figure 50. One bit is shown shifted by 
three shift counts in octal: 00, 37, and 77. 

The shift logic is made up as a very simple gating arrangement to ac- 
complish the selection between no shift and a shift specified by SKn. A small 
section of the network is shown in Figure 51 giving, in this case, both the right 
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and left shifts. This assumes that only two bits of network are contained on 
a module. 

If the network is contained in the manner shown, two columns are held 
in a single set of modules. Bits are placed in the modules so that physically 
adjacent bits are separated by an amount equal to the shift accomplished 
between the first and second columns within the module. Shifts external to 
the module are, of course, easily wired to the correct input pin on the correct 
module. 

Note that the network requires a fan-in to the OR element of three and 
a fan-out of three. Each column uses exactly the same number of logic ele- 
ments. A single module type is used, except for some special end cases. The 
right shift is complicated by the need to extend the sign bit. However, this 
extension is accomplished by generating the sign bit ANDed with the column 
controls in the quantity needed for each column, as follows. 

Right shift count SKo = 1 AND Sign Bit- 1 needed. 
SKI = 1 AND Sign Bit- 2 needed. 
SK2 = 1 AND Sign Bit- 4 needed. 
SK3 = 1 AND Sign Bit- 8 needed. 
SKI = 1 AND Sign Bit-16 needed. 
SK5 = 1 AND Sign Bit-32 needed. 

These signals are entered into the Shift network by fan-out circuits as 
needed. Note that the first columns need the least such terms. Therefore, 
fan-out requirements for the last columns are easily achieved without inter- 
fering with the timing. 

The Shift network is assembled on QF modules with three bits of two 
coltimns on each module. Four special KF modules are substituted for four 
QF for special end cases. The total number of modules, excluding controls, 
in the Shift network is 60, a small number indeed, considering that only one 
minor cycle is needed to pass through the network, accomplishing any shift 
ranging from one to 60, either right or left. 

NORMALIZE NETWORK 

For instructions 24 and 25, an additional network called the normalize 
network is used. This network determines the number of bits of left shift 
necessary to normalize and stores this six-bit number in the shift control 
counter SK. A left shift is then performed in the shift network under control 
of SK. 

To simplify the normalize network, the number to be normalized is first 
forced positive on entry to the Shift Unit Input Register. If complementing 
is required, a “complement” flag is set. 

The coefficient portion of the floating point number to be normalized is 
examined in six groups of eight bits each. Two immediate determinations 
are made. 
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1. The highest order “one” in each group of eight bits. 
2. The highest order group with a “one.” 

The first determination is made simultaneously in six identical modules, 
shown in Figure 52. The second determination is made similarly in one extra 
module. The result of the second test is an octal digit defining the number 
of eight-bit shifts which must be taken. The result also selects which of the 
other six outputs should be taken as the number of single-bit shifts to be 
taken. These two qiiant,ities are merged to  form the six-bit shift count in SK. 
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FIGURE 52 

The first test is accomplished by a simple test of each bit of eight com- 
pared with the bits more significant in the group. A three-bit number is 
formed directly from the logic, and a zero test of all bits is also formed. 

During a normalize shift, the floating point coefficient is shifted left ac- 
companied by a corresponding reduction of the exponent value. I t  is possible 
to  cause underflow during the normalize operation. 

Rounding is accomplished by appending a “one” to the coefficient a t  the 
beginning of the normalize shift. This assumes that the number being 
rounded is single precision, which is, of course, precisely the way i t  appears to 
the Shift Unit. The round bit is forced into the shift network and appears as 
one bit “to the right” of bit position 0 during the left circular shift. 

The remainder of the logic in the Shift Unit is devoted to  the Pack, 
Unpack, and Mask instructions and to the determination of the direction of 
the shift, whether left or right. 

The mask operation utilizes a forced “one” in bit 59, the highest order 
bit, similar to the round operation but followed by a right shift rather than 
left. 

Note also that this functional unit does not utilize a temporary result 
register since the input registers are held tinti! release. As a result, the nei- 
works are allowed to stabilize before the result is sampled and the unit 
released. 

E. ADD UNIT 

The Add Unit is designed to perform floating point addition and subtrac- 
tion. These computations may be made in rounded single precision or un- 
rounded single and double precision. Total execution time is 400 nanosec- 
onds including one minor cycle for placing the result in the selected CPU 
register. The following instructions are executed in the Add Unit. 

30 
31 
32 
33 
34 
35 

Floating Sum of Xi  and Xk to X i  
Floating Difference of Xi and Xk to Xi 
Floating Double Precision Sum of Xj and Xk to Xi 
Floating Double Precision Difference of Xi and Xk to Xi 
Rounded Floating Sum of Xi and Xk to Xi 
Rounded Floating Difference of Xi and Xk to Xi 

Floating point numbers utilize the following format. 

Coefficient 

48 

Biased 
Exponent 

Binary 
Point 

One’s complement number representation is used on all numbers within 
the 6600, including the exponent and coefficient of the floating point 
numbers. 

A simple description of this number representation is given in an earlier 
section of this Chapter on the Fixed Add Unit. 

The use of the integer representation of the coefficient is a particularly 
interesting convenience. This allows short fixed-point integers held in the 
Index registers to be simply converted into floating-point numbers. A pack 
instruction can be used to introduce the exponent bias without any shift or 
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exponent adjustment needed. 
operating on a base two, as follows. 

The exponent is a signed binary integer 

Floating-point number, K * 2e  
where K defines the 48-bit one’s complement coefficient with its sign being 

the sign bit of the entire number, 
e defines the 11-bit signed exponent. 

The bias is applied to the exponent in order to place the “zero” exponent 
in the middle of the range of numbers. The following numbers are examples, 
given in octal. 

0000 000. . . 000. = +0*2-1777, a small number indeed. 
2000 000. . . 001. = + 1 2+0, the integer 1. 
5777 7 7 7 . .  . 712. = -65.2+0. 

The last example shows that the exponent is complemented if the num- 
ber is negative. The net effect of the bias and the negative-number treat- 
ment on the exponent is to  maintain a consistent ascending order to all 
numbers from smallest to largest. This holds true for fixed-point and 
floating-point numbers. 

The exponent bias is very simply applied to the “assembled” floating- 
point number by reversing the exponent sign bit. Therefore, manipulation 
of exponents within the functional units must also make this reversal. For 
clarity, the following cases are given. 

2000 xx . . . x = +x.20 
5777 xx.. . x = -Tim20 
2016 X X . .  . x = +~.216 
1735 X X . .  . x = + ~ * 2 - * *  

Provision is made for the treatment of overflow conditions in this for- 
mat. Three cases are important. These are the infinite case, the indefinite 
case, and the underflow case. 

Any result with an exponent so large that it reaches or exceeds the 
upper limit of 3777 (positive) or 4000 (negative) is treated as an infinite 
quantity. Recognition of this exponent in input operands can produce an 
error exit, if selected. 

The use of infinity, zero, or indefinite operands may produce an in- 
definite result, as shown in the following table. An exponent of octal 1777 
and a zero Coefficient are packed in this case. An error exit may occur on 
recognition of this quantity or its complement as an input operand, if 
selected. 

Any result with an exponent less than or equal to the lower limit of 
octal 0000 (positive) or 7777 (negative) is treated as zero. A result which 
reaches a value of zero exponent, but with a nonzero coefficient is left that 
way. Any following usage, however, considers the number zero for purposes 
of infinity and indefinite. 

Operands 

+o=oooo x . . . x  
-0 = 7777 x . . . x 

+ca=3777 x . . . x  
- ~ = 4 0 0 0  X . . . X  

+ I N D  = 1777 X . . . X 
-IND = 6000 X . . . X 

ADD UNIT 79 

Results 

0 = 0000 0 .  . . o  
IND = 1777 0 .  . . 0 
+ m  = 3777 0 . .  .O 
--03 =40000 . . .  0 

The Add Unit is an example of one key design advantage arising from 
separate functional units. This allows a design uncluttered by any functions 
other than the floating addition and subtraction. The resultant design pro- 
vides a minimum execution time for this function. 

Addition of two floating point numbers requires that the binary points 
be aligned. The approach taken in this unit is to hold the number with 

TABLE V Nonstandard Floating Point Arithmetic 

The following is a tabulation of operations (Add, Subtract, Multiply, Divide) using 
various combinations of operands. 

KEY: 

ADD 
Xi = Xj + Xk 

(Instructions 30, 32, 34) 

- -OO IND - W  -ca 

SUBTRACT 
Xi - Xj - Xk 

(Instructions 31, 33, 35) 

Xk 
I - I  
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+N 
-N 
+O 
-0 
+ w  

2 I N D  
-03 

ADDUNIT 81 

+N -N +a - w  0 
-N +N - w .  + w  0 
0 0 IND IND 0 
0 0 IND IND 0 

+ w  - w  + w  --oo IND 

IND IND IND IND IND 
- W  + W  -CO + W  IND 

t I N D  

TABLE V (continued) 
MULTIPLY 

Xi  = Xi  * Xk 
(Instructions 40, 41, 42) 

Xk 

+N -N +O -0 +03 - w  t l N D  

+N -N 0 0 + w  - w  IND 
-N +N 0 0 - w  + w  IND 
0 0 0 0 IND IND IND 
0 0 0 0 IND IND IND 

+ w  - w  IND IND + w  - w  IND 
- w  + w  IND IND - w  + w  IND 
IND IND IND IND IND IND IND 

DIVIDE 
Xi = Xj/Xk 

(Instructions 44, 45) 

I Xk 

I +N -N +O -0 + w  - w  L l N D  

0 IND 
0 IND 
0 IND 
0 IND 
IND IND 
IND IND 
IND IND 

larger exponent, while shifting the number with smaller exponent to the 
right. The amount of shift is determined by subtracting the smaller expo- 
nent from the larger. 

As an example, add the following octal numbers: 

Xj = 0 2005 0 . .  .05244. (+5244.25) 
Xk = 0 2016 0 . .  .07305. (+7305*216) 

The number in X k  is held, while the number in Xj is shifted to the right 

The new positions of these coefficients can be shown as if in registers of 
a total of 11 (octal) places. 

double length, as follows: 

Xk 0 . .  ,07305.0.. . . . . 0 
Xi (Shifted) 0 .  . . . . . 05.2440. . . 0 

Sum 0 . .  ,07312.2440.. . O  

The binary point as shown in the sum is in the same position as the 
number in Xk. Therefore, the single precision result of this addition would 
be the upper half as follows: 

Single precision sum 0 2016 0 .  . .07312. (7312 * 2 9  

For the case of double precision solution, the lower half can also be 
taken, but the exponent must be reduced to account for moving the binary 
point to the right 48 places. The exponent for the lower half is thus deter- 
mined by reducing the upper half exponent by 60 (octal). This is accom- 
plished by first removing the bias, as follows: 

Octal exponent = 0016 - 60 = -42 

This is described in the 11-bit exponent field, without bias, as 3735. 
Applying the bias by simply reversing the exponent sign bit produces the 
exponent of 1735. Therefore, the double precision result of the above addi- 
tion would be the lower half, as follows: 

Double precision sum 0 1735 2440. . . 0. (2440. . . 0 - 2-42) 

This is, of course, something of a misnomer since the double precision 
sum is, in fact, both the upper and lower halves. However, the two separate 
halves are now placed in a form in which subsequent double precision opera- 
tions are entirely valid. 

Other circumstances possible during an Addition or Subtraction include 
overflow and underflow. An example of an overflow case is given below. 

Xj 0 2032 7700.. . 0. (+7700. . .0.232) 
Xk 0 2032 7760.. . 0. ($7760.. .0.232) 

No alignment is necessary since both exponents are equal. The addi- 
tion obviously causes an overflow, as follows. 

Xi coef 7700. . . 0. 
Xk coef 7760. . . 0. 

17660.. . 0. 

This is the maximum overflow possible on coefficients in the Add Unit 
and is, therefore, detected and corrected before returning the result to the 
CPU register Xi. The correction is very simply a right shift of one-bit posi- 
tion and an increase by one of the result exponent. This will produce the 
following result. 

Sum 0 2033 7730.. . 0. (+7730. . . 0 .  233). 

Because the exponent is increased during this correction, it is also pos- 
sible to “generate” an infinity condition. 

For the underflow circumstance, the following example is given. The 
case arises only in the use of the Add Unit for double precision solution. 
Therefore, the example is a “lower half” result. 
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Xi 0 0040 00 .  . . . 72. (+ 72-2-1737) 
Xk 0 0032 00.. . 332. (+332*2-’T45) 

The result of the coefficient alignment and sum is accomplished thus. 

Xi coef 0 00. . . 072.0. . . . 0 
Xkcoef 0 00.. . .03.320.. 0 
Sum 0 0 0 .  . . 075.320. . 0 

In  taking the lower half, however, the reduction of the exponent 
“underflows” on the 11-bit exponent field. 

Octal exponent - 1737 - 60 = -2017 

The proper exponent, in the case of an underflow, is all zeroes. 

EXPONENT CALCULATION 

The Add Unit begins its operation by testing the relationship of the 
exponents. The test is conducted to determine which is larger, and then to 
produce a shift count for right shifting the number with the smaller exponent. 
The total exponent calculations required are: 

1. select the coefficient with the smaller exponent for entry to the right shift 

2. form an absolute magnitude shift count representing the difference between 

3. select the larger exponent as the exponent for &e with upper-half result; 
4. subtract 60 (octal) from upper-half exponent for use as lower-half exponent; 
5. adjust upper- and lower-half exponents in case of overfiow; 
6. form all zeroes exponent for lower half in case of underflow. 

network; 

exponents; 

The first output needed from the exponent subtraction is the choice of 
the coefficient to be shifted. Shortly thereafter, the bits of shift count are 
required to control the shift network. For these requirements, the exponents 
are extracted from the full number and complemented if the number was 
negative. The bias is removed by complementing the exponent sign bit. 
The two numbers are then placed in a 12-bit subtract network (the exponent 
sign bit is copied into the 12th bit). Five cases are of interest. 

1. Both exponents positive and equal. 
2. Both positive and unequal. 
3. Signsunlike. 
4. Both negative and unequal. 
5. Both negative and equal. 

The choice of smaller exponent for signs unlike is, of course, simply the 
negative exponent. The case of exponents equal is also no contest; an arbi- 
trary choice is satisfactory. The only significant calculation is therefore on 
the unequal exponents of like sign. 

The larger of two numbers can be determined in a one’s complement 
subtract rather easily by examining the end-around-borrow. A network is 
built similar to the subtractive network used in the Fixed Add Unit, except 
only 12 bits long. The end-around-borrow for this case can be derived as- 
suming one exponent is X and the second exponent is the complement of Y. 
In other words, the add network forms the sum of X and minus Y. 

From the discussion in the section on the Fixed Add Unit, it was seen 
that borrows are generated by h y n  terms, and passed by %n + Vn terms. 
This means that a borrow must be generated but may then be passed to the 
left. Looking at this property with regard to the test for the larger expo- 
nent, it can be seen that the end-around-borrow is sensitive to the relative 
size. 

The following examples describe the case. 

- Y  = I111 100 111 111 1 - 0300 
Sum= 111 110 110 111 -0110 

In this first example, a borrow is generated in the fifth position from 
the left and passed all the way, end-around, finally stopping at the fourth 
position from the right. 

Reversing the above numbers, 

1 c EBB 
X = 000 011 000 000 +0300 (Octal) 

- Y  = 111 110 000 111 -0170 
Sum=000 001 001 000 +0110 

Duplicating these numbers, except in negative form, the following ex- 
amples are given. 

1 c BBB 
X = 111 110 000 111 -0170(Octal) 

- Y  = 000 011 000 000 +0300 
Sum = 000 001 001 000 +0110 

-0300 (Octal) 

Sum= 111 110 110 111 -0110 

From this exercise it can be seen that exponent Y is always larger, that is 
more positive, than exponent X if an end-around-borrow is generated. The 
absence of an end-around-borrow indicates either that the two exponents are 
equal or that exponent X is larger than exponent Y. 

The above can be described in more rigorous terms. An interesting 
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quirk of this logic is that for exponents with unlike signs, the existence of an 
end-around-borrow specifies not Y but X as the larger. As a result, the choice 
of coefficient to be shifted is found by the exclusive OR of End-Around- 
Borrow and Exponent Signs alike. 

Two instructions provide for rounding the single precision result of the 
floating add unit. If both input operands are normalized, they may be con- 
sidered to be larger in absolute magnitude by one-half of the least significant 
bit. Since the add network is essentially double length, this may easily be 
forced into the network by appending an extra bit to each operand. 

However, it is convenient to deal with unnormalized numbers and 
especially mixtures of normalized numbers and constants. A constant inte- 
ger, for example, should be treated consistently as an integer. Since Add and 
Subtract are the only functions sensitive to this, the round mechanism for the 
Add Unit is especially built, as follows. 

1. A round bit is attached at the right end of both operands if: 
a. both operands are normalized, or 
b. the operands have unlike signs. 

for all other cases. 
2. A round bit is attached at the right end of the operand with the larger exponent 

RIGHT SHIFT NETWORK 

Having picked the coefficient with smaller exponent and determined 
the proper shift count, the next major step in the Add Unit.is the alignment 
shift. Seven bits of shift count are determined by the exponent calculation. 
If the exponent difference is greater than the seven-bit count, .the shifted 
coefficient essentially “disappears” to the right of the add network. 

The right shift network is a parallel shift network similar to the Shift 
Unit. Since it is used strictly for right shifts, however, the design can be 
tightened with some speed improvement. A small section of this network is 
shown in Figure 53. 

In this network, each node is logically active in performing the right 
shift. The following derivation shows the method. 

F = T + JKS + LMS 
G = f + JKS + LMS 

Assuming term S is the control term RIGHT SHIFT 2 places, the com- 
bination term JK can be said to be shifted right to terms F and G. If no Right 
Shift 2 is desired, the combination term LM can be said to be passed through 
to  terms F and G. 

Assuming term T is the control term RIGHT SHIFT 4 places, the term F 
will be the pass through term or will be a one during the shift. Similarly, the 
term G will be the Right Shift 4 term or will be a one during pass through. 
The effect is to combine two terms at  the next pair of nodes, such as P and Q. 
One input to P and Q is the pass through term, in this case F. The other input 

FIGURE 53 

to P and Q is the right shift term, similar to term G but displaced “left” of G 
by four bit positions. 

Note that the entering terms JK and LM can be formed in exactly the 
same manner as the entering terms for P and Q. In this case, JK must be two 
bit positions “left” of LM in order that S be the control for right shift two 
places. 

This network is a minimum hardware version of a fully parallel right 
shift network and is also a minimum time version. Only seven inverters are 
needed for the seven-bit shift count used in the Add Unit. This is shown in 
block diagram form in Figure 54 (page 86). 

The output of the right shift network is 96 bits plus an additional two 
sign bits. The result of the shift involves a right shift of the selected sign bit 
on a “background” of sign bits. Sign bits are, therefore, duplicated into each 
rank of shift network as needed. 

The adder network is a 98-bit parallel version similar to that discussed 
in the Fixed Add Unit. A slightly different packaging combination is used, 
however, showing the intimacy of the logic and the package once again. In 
this case two bits of the adder “entry” and “output” are contained on one 
module, as opposed to three bits on the Fixed Add Unit. (See Figure 55.) 

The adder “entry” is made up of the coefficient whose exponent was 
larger and the output of the shift network. Since the last rank of the shift 
network causes a right shift of 64 places, the network output is made up of a 



86 CENTRAL PROCESSOR FUNCTIONAL UNITS m m c W Y) 

MODULE BOUNDARIES 
I t /  1 1  \I - I- I- - - 1 -  
I I I 
I I I 

I I I 
I I I 

I I I 

- - 

XI COEFFICIENT 

\ TO 
ADDER Xk COEFFICIENT 

XI EXPONENT 

FIGURE 54 

sign bit or a bit from the second coefficient, right shifted. These quantities 
are combined to form the necessary initial borrow generation and borrow pass 
terms. The borrows are then successively combined in sets of three, three, 
and six as shown in the following equations. 

B1 = XoVo + (Xo + Y0)Bo 
B2 = X1Vi + XoVo(X1 + 81) + (Xo + Vo)(X1 + Vi)Bo 

= Di. + EiBo, 
where D1 - Borrow generation from bit 1, 

, El - Borrow pass for bits 0 and 1. 

At the next borrow (:layer,” all D and E terms can be grouped in three’s. 

B2 = D i  + EiBo 
B4 = D3 + DIES + EiEiBo 
B6 = D5 + D3E5 + DIE& + EiE3E5Bo 

= F5 + G580. 

Similarly, the next borrow “layer” combines in groups of three. 

B6 = F5 + G5Bo 
812  = Fi1 + F5Gil + GsGiiBo 
Bis = F i 7  + FiiGi7 + F ~ G i l G i i  + G5GiiG17Bo 

= Ji? 4- KITBO. 

Finally, these terms may be grouped in six terms, as follows: 

BO = B108 = J107 + JssKi07 + J~IKE~KIOT + J53K71K89K107 + J35K53K~iKsgKio~ 
+ Ji7K35K53K7iKssKio7. 

Bgo = Jss + J~iK89 + J53K7iKas + J35K53K~iKsg + J I ~ K ~ ~ K ~ ~ K ~ I K E ~  
+ J I O ~ K I ~ K ~ ~ K ~ ~ K B O .  
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B72 = J71 + J53K71 + J35K53K71 + J17K35K53K71 + J I O ~ K I ~ K ~ ~ K ~ ~ K ~ I  
+ J s ~ K ~ o ~ K I ~ K ~ ~ K ~ ~ K ~ I  

8 5 4  = J53 + J35K53 + Ji~K35K53 + J I O ~ K I ~ K ~ ~ K ~ ~  + J s ~ K I o ~ K I ~ K ~ ~ K ~ ~  

+ J ~ I K s ~ K I o ~ K I ~ K ~ ~ K ~ ~ .  

B36 = J35 + J17K35 + JIO~KI~K~~ + JE~KIO~KI~K~~ + J~iKsgKio~K17K35 

+ J~~KTIKs~KIo~KI~K~~.  

Bls = J i 7  + Jio7K17 + JsgKio7Ki7 + J~IKssKIo~KI~ + J53KnKsgKio7Ki~ 

+ J ~ ~ K ~ ~ K ~ I K s ~ K I o ~ K I ~ .  

Note that only the Borrow Generation terms are necessary and that 
all six terms involve a maximum of six elements of AND or OR. The network 
shown is sufficient for an add of 108 bits. However, the ADD Unit requires 
only 96 bits for the double length add, one overflow bit and one sign bit. The 
operands are positioned in this adder such that the overflow bit is obtained 
“early.” This determination must be made in order to make a corrective 
shift of one place and an increase by one of the exponent for the overflow case. 

Output of the adder network is sampled directly into the transmitter 
circuits, controlled by the Scoreboard. Choice of the upper half or lower half 
is made just in advance of the transmitters. The right shift of one place re- 
quired after an overflow is also applied to the lower-half coefficient and the 
adjustment to the lower-half exponent. 

F. MULTIPLY UNIT 

Two identical Multiply Units are included in the 6600 CentraI Proces- 
sor. While this is small extravagance, the use of multiplication, particularly 
in multiple precision computation, represents a large percentage of time. 
Each of these units takes 1000 nanoseconds as compared to the 400 nano- 
seconds for the Add Unit. Each Multiply Unit can execute the following 
instructions. 

40-Floating Product of Xi and Xk t o  Xi. 
41-Rounded Floating Product of Xi and Xk to  Xi. 
42-Floating Double Precision Product of Xi and Xk to  Xi. 

As in the Add Unit, both single and double precision results are pro- 
duced. These are the upper and lower halves of the product resulting from 
the multiplication of two single precision operands. The two halves must be 
obtained separately, as in the Add. With two Multiply Units, however, the 
two halves can be obtained on two successive minor cycles, a cost of 1000 
nanoseconds for the first half and an effective cost of 100 nanoseconds for the 
second half. This overlap is easily obtained using two X registers for the 
results which are different from the X registers holding the input operands. 

The double precision result of floating multiplication shown below is a 
double length coefficient with an exponent equal to the sum of the original 
exponents. 

Xi = 0 2001 0 . .  . . . 7 .  (+ 7 - 2 l ) s  
Xk = 0 2002 0 . .  . 102. 

0 2003 0 . .  . . . . . .O 0 . .  ,716. 
~(+102-22)s 
(+716*23)s 

The exponent for this product is correct for the binary point a t  the far 
right as shown. The single precision result, however, takes the upper-half 
coefficient. The exponent must be increased by 60 octal in that case. The 
results of the above multiplication produce the following single and double 
precision results. 

Single Xi = 0 2063 0 . . . . . 0. (+ 0.P3)s .  
Double Xi = 0 2003 0 . .  . 716. (+716-23)8. 

It can be seen that the use of unnormalized arithmetic tends to force use 
of multiple precision. Double precision hardware is eminently desirable for 
unnormalized arithmetic. Normalized arithmetic, on the other hand, re- 
mains satisfactory for a single length coefficient. In multiplication of two 
normalized numbers, the result may “lose” normalization, as in the following 
example. 

Xi = 0 2101 460.. . O .  (+460.. . O*2101)~ 
Xk = 0 2020 400.. .O. 
Xi = 0 2201 230. . . 0. 

(+400.. . 0.220)s 
(+230. . . 0.2201)~ Single 

If the original operands were normalized, this movement of one bit 
position from “normal” is the maximum amount possible in the multiply 
operation. Therefore, the Multiply Units are designed to make the correc- 
tion to the following normalized result. 

Single Xi = 0 2200 460 . . . 0. (+460 . . . 0 - 2200)s. 

This exponent is decreased by one along with the single place left shift. 
The unit examines the input operands to determine if they are normalized. 
The above single place normalization of the result is activated only if both 
input operands were normal. 

MULTIPLY METHODS 

There are a number of schemes for multiplying two binary numbers, 
ranging in complexity. The simplest form using a parallel adder requires 
that the multiplier and partial product be shifted to the right relative to the 
multiplicand. The effect is easily seen in the example on page 90. 
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Multiplicand 1234 
Multiplier 2143 
Partial Product 3724 
Partial Product 5160 
Partial Product 1234 
Partial Product 2470 
Final Product 2671124 

This example is given in octal form but should serve to show the 
method. Actually, the binary multiplier performs an addition and a shift 
for each bit of multiplier, rather than for each octal digit. In the above 
example, this would require twelve additions and shifts. 

One scheme for improving the speed of multiplication is to separate the 
multiplier in half, performing the partial products simultaneously with a 
final addition. The example above is shown below using two halves. 

Multiplicand 1234 1234 
M u  Iti plier 2100 0043 
Partial Product 123400 3724 
Partial Product 2470000 005 1 60 

2613400 ,0055524 
0055524 e--- 

Final Product 2671124 

The time taken to  accomplish the final product by this second method 
can be compared to the simple method as described in the following 
equations. 

TI = n (A + S), 
where TI = multiplication time, simple case, 

n = number of bits in multiplier, 
A = time for a single addition, 
S = time for a single place shift. 

TZ = n/2(A + S) + A, 
where Tz = multiplication time, two halves. 

Carrying this type of scheme to more levels, the “add and shift” times 
can be reduced, but with an increase in the final additions to complete the 
final merged product. This can be defined in the following way. 

T3 = ”(A + S) + (m - 1)A, 

where T3 = multiplication time, “many” adders, 
m = number of separate adders. 

m 

Even this can be reduced some by combining the final merge in a “tree” 
of additions, as in the following example. 

Multiplicand 1234 1234 1234 1234 
Multiplier 2000 0100 0040 0003 
Partial Product 2470000 ,123400 51600 ,3724 

123400/ 3724/ 
26 13400 55524 

55524- 
Final Product 2671124 

This shows that only two additions, not three as defined by the equation 
for Ta, are required for the final product. 

Obviously, the examples are showing a diminishing return from this 
whole scheme. Figure 56 shows a plot of these schemes for several assumed 

RELATIVE 
TIME 

TO COMPLETE 
MULTIPLICATION 

2 3 4 5 6  
NUMBER OF SEPARATE ADDER/SHIFTERS 

FIGURE 56 

add and shift times and takes into account “tree” techniques for the final ad- 
ditions. This is plotted for a multiplier of 48 bits, as needed for the 6600. 

Another scheme for speeding multiplication arises from a technique of 
carry propagation called “carry-save.” This technique eliminates the need 
for completing the propagation of carries through the adder for each succes- 
sive addition. At the completion of the multiplication all unpropagated 
carries are taken care of a t  once. Because the carry, or borrow, propagation 
is a significant part of the total addition time and there are up to 48 additions 
to  perform, this method can be very effective. 

Finally, it is possible to speed multiplication by operating on more than 
one bit of multiplier a t  a time. This method requires formation of multiples 
of the multiplicand. For example, if two multiplier bits are examined a t  one 
time, i t  is necessary to form the multiplicand and the two times and three 
times value. Then the correct multiple is added to the partial product de- 
pending on the value of the two multiplier bits being examined. 

The 6600 Multiply Units use all three methods described above to pro- 
vide very high-speed multiplication functions, as follows: 



92 CENTRAL PROCESSOR FUNCTIONAL UNITS 

1. two halves of the multiplier are handled a t  once, 
2. two bits of the multiplier are examined in each half. 
3. carry-save adders are used. 

SEQUENCE 

Operands Xi and Xk arrive together a t  the input registers of the Multi- 
ply Unit. Immediately, operand Xk is shifted left one bit position and 
entered, along with the original Xk, in an adder to form 3Xk. See Figure 57. 

Xh- 

- 
FIGURE 57 

When these multiples of the multiplicand Xk are available, a sequence 
of four identical steps is taken utilizing the two halves of the multiplication. 
Each of the four steps accomplishes the multiplication of six bits in each half. 
This is diagrammed in Figure 58, showing three “carry-save’’ layers of net- 
work followed by a holding register. 

REGISTER EZ\ 
I 

x -SELECTED BY 5; 5; $: MULTIPLIER BITS 

FIGURE 58 

Each carry-save layer forms the sum of the partial product and the 
multiplicand “multiple” selected by two bits of the multiplier. The result of 
this sum is passed on to the next layer, shifted to the right two bit positions. 
The value placed in the holding register a t  the end of each step is the partial 
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product of six bits of multiplier and the multiplicand and is shifted right by 
six places. 

This value is returned to the first carry-save layer for the next identical 
step. At  the end of four complete steps, there will exist in the two holding 
registers the two unmerged halves of the product. 

The final product is formed by merging these two halves in a parallel 
adder and allowing all “saved” carries to fully propagate. On completion of 
this merge operation, the result is transmitted. In case the original operands 
were normalized, the result may be transmitted with a normalizing single 
place left shift, as needed. 

CARRY -SAVE NETWORK 

The carry-save network has an interesting and very convenient prop- 
erty. In this network, two numbers may be added in such a way as to pro- 
duce two answers which fully specify the result but have a form suitable for 
temporarily holding cames. The network is actually a three-input, two- 
output adder. The two outputs, called pseudo-sum and pseudo-carry, can 
be applied to two of the three inputs in a subsequent step, the third input 
being a normal number. Carries generated in the repeated use of the net- 
work are never “lost.” 

Referring to previous derivations of the parallel adders in the Fixed 
Add Unit and Add Unit, a derivation of the three-input adder is given below. 

It is assumed in this case that the adder network is “additive,” a con- 
venience arising from the fact that no subtraction is involved in the Multiply 
Unit and also that the operands are forced positive. 

CarrySave Pseudo-sum n = (An @ PSn)@Cn 
where An = net addend 

PSn = pseudo-sum from previous addition 
Cn = carry into bit n 

Cn = An-1Psn-1 + PCn-1 
where E n - 1  = pseudo-carry from previous addition 

Carry-Save Pseudo-carry n = (An @ PSnICn. 

The effect of the above treatment of carry is seen to be a one-place 
carry propagation. In general, the carry is defined as: 

The pseudo-carry term is, in effect, a temporary storage of the second 
half of this general carry equation. Similarly, the pseudo-sum term is, in 
effect, a temporary storage of the sum accounting only for the carry gener- 
ated one place to the right and the pseudo-carry from the previous step. 
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It is of some interest to test if carries generated in subsequent additions 
can break down this scheme. 

For this test the potential conflict between the two terms making up 
the carry Cn are suspect. The two terms PSn and PCn, however, can be seen 
to be mutually exclusive. It is not possible to generate a carry term Cn with 
a value greater than one. 
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The following exercise may aid in explaining a simple addition of three 
numbers A, B, and C. 

A OOO 000 101 (005)8 
B 011 111 100 f374k 

A 000 000 101 
+B 011 111 100 

1-1 
Carry 

Propagated 

SUM 100 000 001 
+c 000 110 000 

100 110 001 

This shows a carry generated in the first sum of A and B propagating to 
the most significant bit. Following is the carry-save version of this example. 

A 000 000 101 
+B 011 111 100 

Pseudo-Sum PSI 011 110 001 
Pseudo-Carry PC, 0000 010 00 

Note here that the pseudo-carry is shown shifted left one place, in posi- 
tion for the next addition. Note also that the carry generated has acted on 
the pseudo-sum just to the left and is temporarily stored as a pseudo-carry 
“passed on’’ to the left, therefore requiring further propagation. 

ps1 
PCI 0000 010 00 

Continuing the carry-save version: 

011 110 001 

SC 000 110 000 
PS2 010 110 001 
PC, 0 010 000 00 

FINAL SUM 100 110 001 

The carry-save mechanism is an extremely simple one, being made up 
of Exclusive OR circuits, OR and AND circuits. The DCTL circuit offers a 
very convenient Exclusive OR as shown in the carry-save adder of Figure 59. 

An example of this convenience is the exclusive OR completing the 
solution of pseudo-sum, for simplicity described as Zn @ Cn. The pseudo- 

(Am @ 

- 
CARRY LEFT +-- 1 

I 
I 
I 
I 
I 

I I 

I I  
Am@ PSm )&-&(Am @ PSml Cm 

I 
L- PSEUDO SUM IN 

FIGURE 59 

sum is formed using the “inputs” of Zn and Cn to  obtain the NOT or comple- 
ment of each. The purpose is both total hardware and time through the 
network, the second being most important. If, for example, an additional 
term were included for %, this additional inverter time would be added to 
the network. The maximum number of inverters through the network is 
five. 

Three such networks can be connected, with appropriate shifts wired in, 
such that only fifteen inverters are involved in the long path. This can in- 
clude the register, utilizing the clear-set technique for setting the flip-flop. 
The result of this configuration is three carry-save additions in one minor 
cycle of 100 nanoseconds, the same time needed for a single conventional 
parallel addition. This is especially useful for repetitive additions as in 
multiplication. 

These three carrv-save networks are located on logic modules in a ~ ~~ 

manner consistent with ground rules of loading and pin limits. The block 
diagram of Figure 60 shows this layout on three adjacent logic modules. 

The addend input to the carry-save network in the previous discussion 
is now identified as Mn, the selected Multiplicand multiple. Control over 
the selection of which multiple a t  each “layer” is shown at  the left of the 
Figure. For example, multiplier bits 0 and 1 are translated to select M, the 
multiplicand, 2M or 3M, or, of course, zero. The bits of M are entered as 
shown. Each layer of this network is required to accomplish a shift t o  the 
right of the multiplier and partial product relative to the multiplicand. In 
this case, it is convenient to hold the partial product and shift the multi- 
plicand left a t  each layer. The shift is two bit positions since two bits of 
multiplication are accomplished in each layer. For purposes of clarity the 
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TO HOLDING 
REGISTER 

FIGURE 60 

- 
PSEUDO SUM IN 

multiplicand terms are defined as M 11 7, M217, and M317, showing the in- 
dependence of each layer in terms of multiple selection but retaining the bit 
identification. These three are all bit 17 of the selected multiple. 

The result of the total network for one half of the multiply is shown in 
Figure 61. 

Fifty bits of basic network are required to allow addition of the 3X 
multiple of the 48-bit multiplicand. At  each layer, two bits of product are 
removed to a holding register, a result of the right shift of partial product. 
After four iterations through this network, each half of multiplier has pro- 
duced 24 bits “off the end” and 48 bits of remaining partial product $‘ . inre 

X BY MULTIPLIER 

FIGURE 61 

one-half of the multiplier is 24 bits in length, the maximum value positive 
number contained is 224 - 1. Thus the maximum value in each half of 
partial product is as follows: 

This requires 72 bits of register. 
The “upper half’ partial product overlaps the “lower half” as follows, 

with letters X indicating octal digits directly from each network and letters Y 
indicating “off the end” digits. 

upper 
lower . xxxx xxxx xxxx xxxx Y W Y  Y W Y  

XXXX XXXX XXXX XXXX YYYY YYYY 

The merging addition requires an adder with 72 bits of length. Since 
the lower Y terms do not influence this merging addition, the pseudo-sum 
and pseudo-carry terms, making up this portion of the partial product, can 
be summed. For convenience, these are summed six bits a t  a time during 
the four multiply iteration cycles. 

MERGE 

At the completion of the four iteration cycles there are four numbers 
appearing as outputs of the carry-save networks. These are the pseudo-sum 
and pseudo-carry for each half. Aminor modifkition to the basic carry-save 
network can be used to convert i t  into a full adder. This modification plus 
the addition of a small amount of carry propagation network is shown in 
Figure 62 (page 98). 

The output of the carry network is shown brought into the input nor- 
mally used by the multiplicand. The time for complete carry propagation is 
approximately one minor cycle. 

The above modification is made to the top layer, leaving the lower two 
layers untouched. The four values to be merged can then take advantage of 
these lower layers. For this purpose, the “lower” half carry-save network is 
used for the merge. The pseudo-sum from the “upper” partial product is 
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brought into the input normally used by the multiplicand for the bottom 
layer. Similarly, the pseudo-carry from the “upper” half partial product is 
brought into the middle layer. See Figure 63. The carry from the lower 24 
bits of product is introduced into the long carry network as shown. 

i SUM 
I #  

1 

“LONG” 
CARRY 

0. X.ZX, 3X OR PSEUDO 

.-t_t;””l 
FIGURE 63 

The lower half network is, of course, too small to complete the 96 bits of 
final product. An additional adder for these extra bits is included. 

EXPONENT 

Each Multiply Unit contains logic for the exponent calculation needed. 
Two additions and one subtraction are required of this logic, as follows. 

1. Sum of Xi  exponent and Xk exponent used for the double precision, or lower, 

2. Sum of 1 above and 4810(608) used for the single precision, or upper, product. 
3. Difference of 1. or 2. above and one used when single place left shift is needed to 

product. 

normalize result. 

Figure 64 on page 100 is descriptive of this logic. 
Operands Xj and Xk are forced positive on entry. This places the re- 

spective exponents of Xj and Xk in the input registers in true form. Since 
these input registers are used by both Multiply Units, they are emptied 
within one minor cycle. The two sums described above are formed, and one 
is selected by the function currently being executed in the unit. The decre- 
ment by one is performed and held until the final coefficient product is com- 
pleted. As described previously, the h a l  result will be normalized if the 
input operands were normal. This means a left shift of one place for the co- 
efficient and a reduction by one of the final exponent. The test is made near 
the end of the multiply sequence. The proper one out of four possibilities is 
picked for the coefficient result, together with the proper one out of two ex- 
ponents. The results are complemented if the original signs were unlike. 
The four possible paths for the coefficient are: 

Direct output upper 
Direct output lower 
Left shift output upper 
Left shift output lower 

Tests of the end-case conditions for the exponents are also made. I t  is pos- 
sible to generate exponent overflow, infinity, indefinite, and underflow in this 
unit. 

ROUND 

Rounding is provided in each Multiply Unit for the Single Precision, or 
upper, result. Determination of the round condition is made on the lower 
product coefficient. Simply stated, if the lower coefficient of the product is 
equal to or greater than one half the upper, a round-off is required. 

Truncation of the 96-bit product coefficient has the effect of rounding 
downward or toward zero. This is an attribute of the one’s complement 
number representation. Of course, because both operands are initially forced 
positive, it would also hold true of two’s complement representation as well. 

A common but time-consuming method of rounding is the addition of 
the number one-half to the upper product integer, and allow carries to propa- 
gate into the upper product. The effect is to increase the upper product by 
one for lower half products equal to, or greater than, one-half relative to the 
upper. This kind of rounding requires a full addition time. 
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FIGURE 64 

Rounding in the Multiply Unit is accomplished without additional time. 
The technique used is to preset the adder network such that the preset value 
will be added to the upper product. It is assumed that rounding is desired 
primarily in conjunction with normalized numbers. Approximately half the 
products of normalized numbers will require a single-place left shift to 
normalize the result. A preset value for round receives the effect of such a 
shift. Therefore, the preset value chosen is the number one-fourth relative 
to the integer upper product. As a result, the following round conditions 
apply * 

1. Half of all products which require a left shift will be rounded up by one. The 

2. One quarter of all products which require no left shift will be rounded up by 
other half will round down by truncation. 

one. The other three quarters will round down by truncation. 

The net effect of this pre-round technique is to bias the round slightly 
toward zero. This deviation is considered satisfactory and reasonable be- 
came of the 48-bit coefficient length and the ability to perform double-pre- 
cision multiplication. 

G. DIVIDE UNIT 

The slowest of the Central Processor functional units is the Divide 
Unit. Floating point division requires 2900 nanoseconds, while Population 
Count, a function also assigned to this unit, is accomplished in 800 nanosec- 
onds. The three instructions executed in the Divide Unit are: 

44 Floating Divide Xj by Xk to Xi, 

45 Round Floating Divide Xi by Xk to Xi, 

47 Count the number of ones in Xk to Xi, 

In the design of this unit, one humorous incident stands out and should 
be related. The instruction codes shown above represent a very simple and 
convenient combination if code 46 is included. However, code 46 was se- 
lected as the PASS instruction. As the reader has perhaps already sus- 
pected, the PASS instruction design ended up triggering a complete Divide 
Sequence! Needless to say, this minor embarrassment was corrected. 

There are very few really effective strategies available for the design of 
divide logic. The basic method operates much like the pencil and paper 
method; the successive subtraction of the divisor from the dividend followed 
by a left shift of the dividend and quotient relative to the divisor. 

The following example illustrates the method using four octal digits to 
represent the divisor coefficient and the dividend coefficient. 
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Xj = 7604 
Xk = 5213 

1.3613 
Xj/Xk = 5213 7604.0000 

5213 

2371 0 
1764 1 

- 

404 70 
375 02 

7 660 
5 213 

2 4450 
17641 

4607 

While an octal method could be used, the Divide Unit instead forms 
only two bits of Quotient in one step. To do even this, three subtraction net- 
works are required as shown in Figure 65. 

The operands are initially forced “positive.” Three values are simul- 
taneously subtracted from the partial dividend. These values are the divisor 

I 
TIMING CHAIN I 

FIGURE 65 

I 
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and its second and third multiple, a design condition rather similar to the 
Multiply Unit. Because the operands are initially forced positive, the 
dividend is positive and the divisor is negative in preparation for the 
subtraction. 

The Divide Unit design assumes that normalized arithmetic is being 
used or that other program techniques are applied to protect against divide 
overflow. One technique is to normalize a t  least the divisor. Methods of 
unnormalized arithmetic, such as significance arithmetic, can also be used. 
In any event, the unit corrects only for a single-bit overflow such as the case 
cited above. 

Following this example through, multiples of the divisor are first 
formed. 

Dividend Divisor 

Xk = 5213 (Octal) Xi = 7604 
2Xk = 12426 
3Xk = 17641 

All three multiples of the divisor are simultaneously subtracted from 
the dividend. The largest of the three which can successfully be subtracted 
without changing the sign of the resultant partial dividend will define the 
quotient bits for this iteration. The fhst iteration defines a quotient of 
01.XXX.. . X binary since only Xk can be subtracted. The resultant partial 
dividend is also picked from the first subtractor and entered into all three 
registers associated with the three subtractor networks. 

For the second iteration, the partial dividend is shifted left two bit posi- 
tions. This is shown as follows. 

Dividend 7604 Octal 
Divisor 1X -5213 

LJI I 
---- Sniirea ieir i birs = I I IW 

Trial subtraction for the second iteration again finds the largest accept- 
able subtraction of Xk. The following table is a consolidation of all seven 
iterations showing the partial dividend after the successful subtraction, un- 
shifted and shifted, as well as the quotient. 

Step 
Partial Part i a I 

Div. Shifted Div. Unshifted Quotient (Binary) 
- 

1 
2 
3 
4 
5 
6 
7 

7604 2371 
11744 4531 
22544 2703 
13414 766 
3730 3730 

17540 51 12 
24450 4607 

0.1.xxxxxxxxxxxx - 
01 .~xxxxxxxxxx  
01.01lJxxxxxxxx 
01.0111gxxxxxx 
01.01 11 10ocJxxxx 
0 1.01 1 1 1 ooogxx 
01.01~1190010~ 
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The quotient is therefore 1.3613 octal which is a single-place overflow. 
This is corrected by a single right shift, producing the coefficient result .5705 
octal. The exponent of the result is increased by one in conjunction with this 
shift. 

Because coefficients are really 48 bits long, not 12, the above procedure 
requires twenty-five subtractions and twenty-four shifts. Each subtraction 
takes one minor cycle since the borrows generated during each subtraction 
must propagate to the sign bit in order to determine the success of each 
subtraction. 

Because the signs of the numbers are known, i t  is a considerable, in fact, 
critical advantage to look at  the end-around-borrow, EAB, rather than the 
sign. With a 48-bit subtract network, EAEi can be determined in fewer in- 
verters than the sign. To pick the correct network output requires combin- 
ing the EAB signals from all three networks as shown in Figure 66. 

*SELECT DIVIDEND - 3Xk 

SET Q = 3 \ 
2Xk EAB 

SELECT DIVIDEND - ZXk 

SET Q = Z  

Xk EAB 

SELECT DIVIDEND - Xk 

b-u- SELECT DIVIDEND 

SET Q = 0 
FIGURE 66 

This logic is a direct result of the relationship of end-around-borrow to 
the relative sizes of the partial dividends and the particular subtractor. 
There will be an EAB only if the applicable divisor multiple is greater than 
the dividend. 

EXPONENT 

A series of add networks are connected in a manner similar to the Multi- 
ply Unit in order to perform the exponent calculation. The true exponents 
are extracted from the original operands Xj and Xk. The exponent of the 
divisor Xk is subtracted from the exponent of the dividend Xi. 

Because the result of the division is essentially a fraction as shown in the 
example, a reduction in the exponent is necessary to conform to the correct 
positioning of the binary point. This reduction of 4810, or 60 octal, is accom- 
plished by a second add network. Finally, the overflow correction requires 
an increase of the resultant exponent by one. 

ROUND 

To counteract the effect of truncation of the quotient, the Divide Unit 
includes the ability to round-off. In this Unit, as in Multiply and Add Units, 
the round is achieved with no increase in time. A round value is preset into 
the dividend in order to effect an increase of the final quotient by one-half. 
As in the other units, the overflow and normalize adjustments tend to affect 
this type of round. 

In the Divide Unit, about sfty per cent of the quotients resulting from 
using normalized dividend and divisor require the overflow right shift adjust- 
ment. For the half requiring no shift adjustment, the preset round value of 
one-third relative to the integer dividend has several interesting properties. 
This value, if essentially added to the original dividend, is also divided by the 
divisor. If the divisor is normalized, the possible range is 1/24!” to Just less 
than 2”. The effect on the round value is to give it a range from one-third to 
two-thirds, on completion of the division. For the no-shift cases, this centers 
around the desired value one-half. Again, as in Multiply, the right shift 
cases tend to bias the round-off slightly toward zero. 

POPULATION COUNT 

The count of the number of ones in a sixty-bit word is accomplished in 
the Divide Unit in 800 nanoseconds. The logic of this “population” counter 
is essentially a tree of adders, as can be seen in Figure 67 (page 106). 

A first column of circuits is constructed to form three-bit quantities of 
the number of ones in four-bit groups. There are, as a result, fifteen octal 
quantities to be added. Taken two a t  a time, four add cycles are needed. 
The logic of a single four-bit group converted to a three-bit binary number is 
an interesting combination in Figure 68 (pages 108-109). 

The four bits generate two Exclusive OR terms which combine in an- 
other Exclusive OR to establish the least significant bit of the count value. 
The remainder of the logic in the figure is self-explanatory. 

H. INCREMENT UNITS 

Two Increment functional units are included in the Central Processor. 
Each unit is capable of performing -. fixed point addition and subtraction on 
18-bit b e d  point numbers. ‘l‘hese operatlons are needed h: 
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FUNCTION TIME IN NANOSECONDS 

I I 56-59 

52-55 

I 48-5t 1 44-47 

i 40-43 

i 36-39 

I 32-35 

1 28-31 

I 24-27 
I 

I 20-23 I 16-t9 

I 12-15 

I 8-14 
I 
I 4-7 

I 0-3 
I I I I I 

FIGURE 67 

Indexing - Reading and storing arithmetic operands 
Conditional branch tests. 

A set of instructions in the Central Processor is devoted to preparing, 
hcrementing, and moddyng the addresses for reading and storing operands. 
The effect of these instructions is to generate a new address in one of the eight 
A registers and, at the same time, to initiate a storage reference a t  the new 
address. These instructions are listed below. 

50 Sum of Aj and K to Ak 30 bits 
51 Sum of Bj and K to Ai 30 bits 
52 Sum of Xj and K to Ai 30 bits 
53 Sum of Xj and Bk to Ai 15 bits 
54 Sum of Aj and Bk to Ai 15 bits 
55 Difference of Aj and Bk to Ai 15 bits 
56 Sum of Bj and Bk to Ai 15 bits 
57 Difference of Bj and Bk to Ai 15 bits 

Note that the first three are the long format of thirty bits in order to 
describe an eighteen-bit quantity K. Shown in Figure 5 of Chapter I1 is the 
relationship of the A registers to the X registers. Specific read trunks are 
provided from central nt’nrage t.o rPgiiterS X I  thmngh XE;. Specific store 

trunks are provided from registers X6 and X7 to central storage. Whenever 
a result of one of the above instructions enters one of these seven A registers, 
a storage reference is initiated causing a read or a store to or from the specific 
“partner” x register. Registers A 0  and XO do not participate in central stor- 
age operations but are reserved for Extended Core Storage usage. 

Another set of instructions is devoted to fixed point calculation for in- 
dexing, manipulation of constants, and assorted other uses. These are 
grouped such as to  produce changes in the B Increment registers and is the X 
operand registers, as follows. 

60 
61 
62 
63 
64 
65 
66 
67 

70 
71 
72 
73 
74 
75 
76 
77 

Sum of Aj and K to Bi 
Sum of Bj and K to Bi 
Sum of Xj and K to Bi 
Sum of Xj and Bk to Bi 
Sum of Aj and Bk to Bi 
Difference of Aj and Bk to Bi 
Sum of Bj and Bk to Bi 
Difference of Bj and Bk to Bi 

Sum of Aj and K to Xi 
Sum of Bj and K to Xi 
Sum of Xj and K to Xi 
Sum of Xj  and Bk to Xi 
Sum of Aj and Bk to Xi 
Difference of Aj and Bk to Xi 
Sum of Bj and Bk to Xi 
Difference of Bj and Bk to Xi  

Note that the three sets of instructions differ only in the specification of 
the result register set X, B, or A. Although many more combinations of addi- 

implemented in the design and are considered to be the most useful. 
The Increment Units are also utilized as “partner” units to the Branch 

Unit for conditional jumps, as described in the following instructions. Again, 
as in the Fixed Add Unit, the Increment Unit is begun simultaneously with 
the Branch Unit, as a “partner.” The Increment Unit accomplishes the 
conditional tests while the Branch Unit is preparing the destination address. 

.. 1 iiuu mid suLilaciiun are pussiule uii ihe regisiem, u d y  ihe fuieguiiig welt:  

02 GotoK + Bi 30 bits 

04 Go to K if Bi = Bj 30 bits 
05 Go to K if Bi # Bj 30 bits 
06 Go to K if Bi 2 Bj 30 bits 
07 Go to K if Bi < Bj 30 bits 

The first jump instruction above, 02, is an unconditional jump to loca- 
tion K plus the contents of register Bi. In this case, the Increment Unit per- 
form the 1Sbit addition needed to determine the jump destination. 
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FROM 

FEEDER REGISTER 

A A A A  

ONES UXlNTER 
BITS 56-59 I 

52 - 55 Hi 
4R- 51 Lux 

(GO MULT 1 + 2 EXP) 

COEFFICIENT 

COUNT 
CONTROL CLEAR 

GATE OUT +1.2 v 

44-47 
40-43 
36 - 39 

32-35 

24-27 
20-23 
16-19 

12 - 15 

I 4-7 H021 
31TS 0 -  3 no1 

s=o----l :* 2: 

G 

I I  

ro x, 

FIGURE 68 
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The other four instructions, 04 through 07, are conditional jumps in 
which the Increment Unit performs the test on the specified B registers. In 
these five cases, the Increment Unit selected does not return a result to the 
registers. The result is transferred instead to the Control System of the Cen- 
tral Processor, as will be described in the following section on the Branch 
Unit. 

The Increment Units are shown in Figure 69. The two Increment Units 

REQ. REL I 

I /ENTER K, INCR I - I 
FIGGEE by increment tunctional units-block diagram. 

share, for convenience, a common add network. The identity of each unit is 
found in the result register. These units retain the result in temporary stor- 
age in the result registers until called for by the control system. 

In those cases in which the K field from the instruction is used as one of 
the operands, this quantity is temporarily loaded into the appropriate result 
register. As will be described later, the other operand is brought into the 
unit, and the K entry is returned to  the input a t  the same time. 

STORAGE REFERENCES 

In the set of instructions which specify a new address in one of the A 
address registers, there are two outputs of the selected Increment Unit. One 

of these outputs is connected to the specified A register, just as a normal func- 
tional unit output. The other is taken directly to the Central Storage Stunt 
Box. This technique obviously reduces the storage access time for a storage 
reference. A somewhat simpler form of design could have been to wait for 
the new address to be sent to the appropriate Address register and then to 
the Storage Stunt Box. This would have increased access time by two or 
more minor cycles. 

The “computed GO TO” jump, 02, also requires the result of the Incre- 
ment Unit add network. In this case, the destination value is sent to the 
Central Storage Stunt Box and to the Program Address Register P. 

In some circumstances, the Increment adder network must hold the 
results temporarily because of a “backlog” of references entering the Central 
Storage Stunt Box. This is a rare event; thus the design tends to favor the 
“no-conflict’’ smooth-flow case. This portion of the control system is compli- 
cated, however, by a focusing of the Branch testing, indexing, and storage ad- 
dress manipulation activities in the Increment Units. 

INCREMENT ADDITION 

The fixed point numbers held in the A address registers and B incre- 
ment registers are represented in one’s complement form. Addition is 
accomplished in much the same manner as in the Fixed Add Unit and in the 
Add Unit. Operands entering the Increment Units are left in original form, 
regardless of sign. 

In the case of operands from the X operand registers, which are of sixty- 
bit length, the sign is taken to be the 18th bit from the low or right end. Re- 
sults-going to the X registers from the Increment Unit produce sign extension 
in the selected X register. 

1. BRANCH UNIT 

The Branch Unit is unique in several ways relative to the other func- 
tional units. 

It uses “partner” units for conditional tests. 
It halts any further instruction issuing until the Branch is complete. 
The only result of the unit is a possible change in Program Address Register p, 
and a new program path, or a PASS. 

The following instructions are executed by the Branch Unit. 
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010 Return Jump to K 

02 Go to K plus Bi PARTNER-INCREMENT UNIT 

030 Go to K if Xj = O  PARTNER.FIXED ADD UNIT 
031 
032 
033 
034 
035 
036 
037 

Go to K if Xj # 0 
Go to K if Xj is Positive 
Go to K if Xj is Negative 
Go to K if Xi is In Range 
Go to K if Xj is Out of Range 
Go to K i f  Xj is Definite 
Go to K if Xi is Indefinite 

04 
05 
06 
07 

Go to K if Bi = Bj 
Go to K if Bi # Bj 
Go to K if Bi 2 Bj 
Go to K if Bi < Bj 

PARTNER-INCREMENT UNIT 

In executing these Branch instructions, four major steps are taken. 

Step 1 Determination of the condition specified in the conditional Branch in- 
structions. This step is accomplished in the Partner Unit. 

Step 2 Calculating the jump address. 
Step 3 Determination of jumps to the Instruction Stack (Chapter VI). 
Step 4 Initiating Storage reference for new instruction if not in the Instruction 

Stack. 

PARTNER UNIT 

In the conditional Branch instructions and in the 02 instruction, the 
Partner Unit must be free to proceed before the instruction can begin. Step 
1, as described above, is executed a t  the same time as Step 2. This allows the 
c o n d ~ t k ~  test zx! thc $&ixp ad&-i-ss &&iiion to be completed in the mini- 
mum time. If the condition is met, the new program address is transferred to 
the program address register P. If the condition is not met, the program con- 
tinues to the next instruction. 

- .  

INSTRUCTION STACK 

Only the conditional Branch instructions, 03 through 07, are allowed to 
jump within the instruction stack. Eight words may be held in the instruc- 
tion stack. These are loaded one at  a time during the normal course of in- 
struction fetch. Each new instruction word is entered a t  the bottom causing 
the older words to move up. Whenever a Branch instruction causw a jump 
out of the stack, all of the instruction words accumulated in the stack are 
declared void. New instruction words are then brought in as described in 
Chapter VI. 

Two values are maintained in the control system for the stack, a depth 

(D) and locator (L). The depth (D) is a measure of the valid instructions in the 
stack. This means that the value of D is set to zero after any Branch out of 
the stack and is increased by one for every new instruction word brought in. 
When the stack is full, D remains equal to seven. The locator L is used to 
specify the location in the stack of the instruction word currently in use. 
These values are all that are necessary to allow Step 3 above to be’ accom- 
plished. The test is made in the following manner. 

1. The program address P is subtracted from the Branch destination K. 
2. For values of K-P ranging from minus 7 to plus 7, a further test is made. 
3. The value of K-P ranging from minus 7 to plus 7 is compared with the locator L 

and depth D. 

It should be clear from this test that the Branch within the instruction 
stack can be forward or backward. Note also that the 6600 Branch instruc- 
tions only allow for jumps to full word boundaries. 

For jumps within the stack, no storage reference is initiated in order to 
preserve the current stack contents. Also, the initiation of new instructions 
will only occur if the bottom stack register supplies the instruction (Chapter 
VI). Therefore, program loops may be held in the stack in various forms. 

Whether a “loop” within the stack or a jump out of the stack is per- 
formed, the new program address is set in the program address register P. 
This means that the instruction word defined by P can “float” up in the stack, 
only requiring the locator L for identification. 

RETURN JUMP 

The Return Jump instruction, OlOjk, is unique in that two storage ref- 
erences are executed. The Grst stores an unconditional jump (0400) and the 
clAmr+ yl.LJre= S<i-jG& 

reference causes an instruction fetch from address K + 1. The effect of the 
Return Jump is shown in the diagram of Figure 70. 

“”2 ! D ; 1) ka $kc q.pc; L& ef ;&&-= K. 

0100 K INtSERTED 

- I 0200 i - 1 1 EXIT 

FIGURE 70 

Return Jump “inserts” in exit unconditional Branch which is used by 
the subroutine to  return to the originating routine. Since this “insertion” 
does not modify the lower half of the word a t  address K, this lower half can 
also be 11s~d hy thp &gina_ting ~QI&E t~ fi;.thpr j~!p&ib the R r n ~ h  S Q ~ K C ~ .  
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In any case, this instruction must be used with care since the return address 
left in address K can be destroyed by re-use of the subroutine after an un- 
expected interrupt. Although the Return Jump is a very useful and conven- 
ient instruction, it represents the type of program “self-modification” which 
requires careful handling. 

Note: To such a pious statement as the preceding one, there is the 
temptation to claim foul. For example, what does “careful handling” mean? 
Or, alternatively, should it be used at  all? The reader must simply determine 
the conditions which hold for the case in question. If a subroutine is to be 
used by many programs under interruption conditions, it is vulnerable. 

The Return Jump instruction is not allowed to jump to the instruction 
stack because it must leave the return address in storage. The instruction 
stack does not return, of course, to central storage. 

The steps involved in the Return Jump are as follows. 

1. Read Return Jump. 
2. Stop Instruction Issue. 
3. Transfer P (contains P + 1) to S Register. 
4. Transfer R (jump address K) to P. 
5. Transfer P to Stunt Box register MO. 
6. Transfer S to Storage Write Distributor and Force 0400 in Upper Bits of 

7. Increment P (Jump Addres plus 1) and Transfer to Stunt Box Register MO. 
8. Transfer MO and Stunt Box Tag for “Read Next Instruction” to Stunt Box 

9. Wait for Accept to Proceed. 

Distributor. 

Hopper. 

J. ECS COUPLER-CONTROLLER 

An optional addition to the 6600 computer system, the Extended Core 
Storage Unit, requires the equivalent of a CPU functional unit. This is 
called the ECS Coupler. Two CPU instructions are issued to the ECS Cou- 
pler, described below. 

O l l j k  
012jk 

Read a block of length (Bj) + K words from ECS t o  Central Storage. 
Store a block of length (Bj) + K words from Central Storage to ECS. 

The starting address of Central Storage is defined by the contents of 
register AO. The absolute address in Central Storage is found by the sum of 
(AO) and RA. The starting address of Extended Core Storage is defined by 
the contents of register XO. The absolute address in ECS is found by the sum 
of (XO) and RAecs. 

A length test is made a t  the beginning of the block transfer to  determine 
if the field length for Central Storage FL or the field length for ECS FLecs will 
be exceeded by the transfer. If so, the instruction is aborted as described 
later. 

Similar to the BRANCH Unit, all instruction “issues” are halted during 
an ECS execution. The reason for this is that the block transfer between 
Central Storage and ECS uses the Central Storage trunk system to full ca- 
pacity in one direction of data flow. 

Control is given to the ECS Coupler after the instruction is issued. Two 
restart possibilities exist. These are triggered by the End of Transfer signal 
or the Abort signal. Typically, the instruction is located in the upper, or left 
half, portion of the instruction word. On an End of Transfer signal, the re- 
mainder of the instruction word is ignored. On an Abort signal, the next in- 
struction is taken from the lower, or right half, of the instruction word. This 
allows for separate treatment of the normal transfer and the aborted 
transfer. 

Initial data entered into the ECS Coupler are the K field of the instruc- 
tion, the contents of registers Bj, A0 and XO. The block transfer length is 
first determined by the sum (Bj) + K. Following, the test is made against 
FL and FLecs, shown below. 

A 0  + (Bj) + K.FL 
XO + (Bj) + K-FLecs 

tests for Central Storage. 
tests for ECS. 

After the transfer length test is made, the ECS Coupler controls the 
block transfer, acting as the control interface between Central Storage and 
Extended Core Storage. 

CONTROLLER 

Extended Core Storage uses a “super-word,” or sword, of 480 bits, with 
eight bits of parity. Therefore, addresses offered to the controller are re- 
quired for every eighth Central Storage word. During a block transfer, the 

thr cG.;ect sfi-L,;t -;;ord bGGG&-y, 
and subsequent addresses a t  sword boundaries. 

The ECS Controller accepts addresses on a sword basis. By this means, 
each group of eight Central Storage words is transferred through the ECS 
Controller. On Read transfers the initial address is, in general, one of the 
eight 60-bit words within a sword, as shown in Figure 40 in Chapter IV. 

The controller separates the sword address and word pointer for the 
READ operation. After the read reference is initiated and the sword is read 
into the Bank Register, the word pointer controls the beginning of the block 
transfer. Sixty-bit words are transferred, beginning at  the word pointer loca- 
tion, and continue a t  minor cycle intervals to the end of the sword. After 
the first address, this is an eight-word cycle. In Figure 41 in Chapter Iv is 
shown a series of eight-word cycles in a typical transfer. 

This diagram illustrates the fixed time intervals associated with each 
sword address. The important thing is that each eight-word transfer is con- 
ducted a t  minor cycle intervals. It is possible to break in a t  sword boundaries 
to allow PPU references to Central Storage or to allow other acces channels 

ECC +lp!eF dzy-,-z ;-. ici..;! 
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to reference ECS. Without such interruptions, a block transfer can proceed 
without any break, as shown. With any interruption, a penalty is paid in 
the control system and in the conflict of usage of ECS banks or Central Stor- 
age banks. 

INTERRUPT 

The ECS Coupler delivers sword addresses to the ECS Controllerunder 
the constraints mentioned above. Whenever a PPU reference to Central 
Storage is allowed to interrupt, a short restart time penalty is exacted. An- 
other, more serious interruption can occur in the CPU. This is the appear- 
ance of an Exchange Jump. The effect of such a signal is to cause an abort of 
the entire transfer. It is assumed that the entire block transfer will be re- 
initiated in a later return to the program which was interrupted. 

The ECS Coupler generates an address for every 60-bit Central Storage 
word in the block transfer. These addresses are entered in the Stunt Box 
mechanism with one assumption. This assumption is that the references will 
proceed in order with no conflict. This is insured because the beginning of 
operation is not allowed until all other Central Storage references are 
completed. 

STORE 

Store references are specially handled in the ECS Controller. A fixed 
time interval is required for words entering the ECS Controller to be stored. 
Once this fixed interval is over, no entries are honored. The final sword in a 
block transfer is handled satisfactorily in this manner since the words to be 
stored are delivered to the ECS Controller in consecutive minor cycles, until 

time interval completes the operation correctly. 
the hlnrk is  mmpletpd If the hl&lr_ & s h c ~  ef 2 --.y.’ hc-zdzy, t he  &2d 

CENTRAL PROCESSOR 
CONTROL 

VI 

In the 6600 Computer, perhaps even more than in any previous com- 
puter, the control system is the difference. The essential premise of the Cen- 
tral Processor is “functional parallelism.” Chapter V has dealt with the 
functional units. This Chapter will show the methods employed to control 
these units in parallel. 

It is well to repeat the essentials of the “functional parallelism” of the 
o o w  umipuier. inese are: 

Separate functional units, 
Registers for operands, indexes, and addresses, 
Instruction Stack, 
Reservation control, or Scoreboard. 

,.,.-a ,Y m. 

This last is the major part of the control system. There are, of course, 
other elements of the control system which are also essential. For example, 
the operating system for the 6600 provides overall control of job scheduling, 
allocation of CPU and storage, and the control of Input and Output. 

A. EXCHANGE JUMP 

The Central Processor is started, stopped, or otherwise interrupted by 
means of the Exchange Jump. This operation may be initiated by a Peri- 
pheral Processor or hy the Central Processor. To initiate the operation. a 
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PPU executes the Exchange Jump referring to a Central Storage location as 
shown in Figure 71. 

This location is the fist of 16 words called the ‘‘exchange package.” 
seen, the contents of the 24 Central Processor Registers are copied into this 

dress and field length entries. In short, the entire “state” of the CPU is reset 
by the Exchange Jump. 

As a hardware option the Central Processor can also initiate and then 
execute an Exchange Jump. Since this is a conceptually different situation 
from a PPU interruption, there are several changes from the simple EX- 

LOCATION N 
EXCHANGE PACKAGE 

ri 
FIGURE 71 

package, together with other essential data including the program address, 
relative address and field length for Central Storage and ECS, error mode, 
and a pointer where applicable. The effect of executing the Exchange Jump 
instruction in the PPU is simply a pass. The effect, however, in the CPU is a 
series of the following steps. 

1. The CPU issues instructions up to, but not including, the next one located first 
in an instruction word. 

2. All issued instructions are nllnwd tn R?I? tc %r?p!et;.nr.. 
3. The CPU registers are then interchanged with the data stored in the exchange 

4. The CPU is restarted at the location specified by the new contents of program 
package. 

address register, P. 

These steps are completed in an uninterruptable sequence, taking a 
variable time for steps 1 and 2 and just over two microseconds for steps 3 and 
4. Average interruption time is in the range of three to five microseconds. 

The effect of step 1 above is su5cient to cover instruction combinations 
including Branches and also provides a clean starting point for restart a t  a 
later time. Step 2 insures that the integrity of the interrupted program is 
maintained. Step 3 is a special privilege provided by the Central Storage 
system, which allows readout of stored data and the write of new data in a 
single storage reference. Because there are only sixteen words to be inter- 
changed, the interleaved bank structure of Central Storage is used efficiently. 
Finally, the new program is begun at the new location at (P) using the newly 
exchanged drrtn. N& thst the Exchange J’;?;i; ~TG&GC= idiitive ad- 

change Jump. 
First, there is defined a “monitor” state in which the Central Processor 

may initiate jobs or tasks in a direct manner. The exchange package, in this 
case, is defined by the location (Bj) + K in instruction 013jk. The CPU may 
thus prepare a new task in a manner similar to the PPU, then initiate it. 
The CPU also inserts in the exchange package during the execution of the 
monitor program, a pointer to the “return” exchange package on completion 
or interruption of the task. Therefore, when the task signals completion by 
executing instruction 013jk, the designators j and k are ignored. Instead, 
the Exchange Jump is executed using the monitor address pointer to specify 

Tranzistor “chip” showing surface metal pattern and connectlng leaas. 
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the locatim of the exchange package. The intended effect is to alternate 
between monitor and task. Note: task is used here to define programs which 
require operating system assistance to initiate. A task may be a portion of 
a user program, a “public” library program, or the operating system itself. 
A task may be interrupted in some “time slicing” manner. 

The PPU is also able, within the same option, to control Exchange 
Jumps in the manner described above. For this purpose a conditional Ex- 
change Jump may be executed. The effect is to cause a “return” to the 
monitor if‘the CPU is not already operating in the monitor state. If the CPU 
is operating in the monitor state, no action is taken. The operating system 
software in this case provides for a confirmation by the initiating PPU, using 
a message area in Central Storage. The PPU, by program, repeats the con- 
ditional Exchange Jump until successful. 

The optional Exchange Jumps described above are especially useful 
and interesting in conjunction with Extended Core Storage and the com- 
patible 6500 Computer which contains two smaller CPU’s. In the latter 
case, each CPU can interrupt the other and itself in the manner described. 
The advantages of two CPU’s, even though slower than a 6600 CPU, are 
particularly sensitive to the amount of storage and to the ability of each 
CPU to initiate new tasks. The optional Exchange Jumps are most useful in 
this case. 

The Exchange Jump operation is a key mechnism of the 6600 operat- 
ing system. With it, a PPU may act as system monitor, scheduling and inter- 
rupting the CPU. Similarly, with the hardware option the CPU can take 
ouer the Central portion of the system monitor while still deferring Input- 
Output and external interrupt h a d i n g  to the PPu’s. 

B. INSTRUCTION FETCH 

Following any Exchange Jump, the new contents of the program ad- 
drew, register P are used to  locate the first instruction word. This address is 
sent to the Central Storage Stunt Box modified by the new relative address, 
(RA) + (P). The program address is also tested against the Central Storage 
Field Length FL. If the program address exceeds the field length, all zeroes 
are read from Central Storage. If the error mode is set to abort on such a 
fault, the program branches to Relative Address RA and halts indicating the 
error. If the error mode is not set, the new instruction of all zeroes is “ex- 
ecuted,” producing a halt. Note that the error mode conditions cover the 
detection of infinity and indefinite in floating point operands as well as the 
storage reference out of bounds described here. 

Assuming a normal program start, the first instruction word enters a 
buffer register located a t  the bottom of the instruction stack, briefly discussed 
in Chapter V. This is shown in Figure 72. 

I’ 
I0 

INPUT REGISTER - 
CENTRAL MEMORY 

FIGURE 72 Instruction stack. 

Immediately on entering the bottom register, the first, or left-most, 
instruction is transferred to a series of instruction registers, UO through U2. 
As this transfer occurs, another instruction fetch is initiated. The condition 
for this step is simply that the left-most instruction is being transferred for 
execution. In later discussion it should be clear how this satisfies all in- 
struction fetch conditions to Central Storage except the start after Exchange 
Jump. 

Instruction words are made up of four “parcels” of a t een  bits each. 
The first instruction in a word uses parcel 0 for short format or parcel 0 and 1 
for long format, as shown in Figure 73. 

PARCEL 3 (PK.3) 
w 

PARCEL 2 (PK.2). 
PARCEL i (PK.1): 

PARCEL 0 (PK = 0,: 

TN ,r 259 20 

FIGURE 73 Instruction word parcels. 

In order to cover the long format, thirty bits are extracted from the 
instruction word on every minor cycle. For’short formats the second half 
is ignored. For long formats an extra minor cycle is spent skipping the sec- 
ond half. 

Instructions are loaded in register U1 by two paths as shown in 
Figure 74 (page 122). 

From odd levels of the instruction stack instructions enter U1 directly. 
From even levels of the instruction stack instructions enter U1 via register 
UO. This form of logic is a result of the instruction stack data movement. 
Instructions are entered at the bottom of the stack following a shift maneu- 
ver in the stack. Whenever a new instruction fetch is initiated, the contents 
of the stack are “inched” upward, one register every half minor cycle. AS a 
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LOOP + 2. Instruction word C contains a branch instruction, GO TO LOOP 
I F .  . . , which causes control to  transfer back to instruction word A if the 
condition is satisfied. Instruction fetch of each of these instructions is ini- 
tially accomplished from Central Storage. In fact, because the first pass 
through this program “loop” requires that the first instruction contained in 
instruction word C be transferred to U2, an additional fetch is initiated. 
The result is that an additional instruction word D is entered in the lowest 
level of the instruction stack before the Branch is taken. After word D is 
entered into the stack, the “loop” can be held without further entries. This 
could be called a form of “look behind.” 

Instruction fetch and execution from the instruction stack is faster than 
from Central Storage for three reasons. 

- Access time to  the instruction stack is short. 
Test of Central Storage busy adds time, as does the summation of relative 

Use of the instruction stack removes a Central Storage reference. 
address RA with the Central Storage address. 

tion 
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instruction is translated and analyzed in this trip. Following instructions 
are also brought through the same path in minor cycle intervals. 

From instruction register U2, the instruction is issued to the functional 
unit designated. Only two restrictions are made on this issue. 

- The Register designated for the result must not be reserved for a result by a 

The functional unit designated must not be busy. 
previous instruction. 

Because these two conditions are fairly simple to establish, the instruc- 
tion issue decision is made quickly. Instructions may be issued at minor 
cycle intervals dependent only on these two conditions. 

The “supply” of instructions in the “pipe” leading to register U2 is 
synchronized with each issue signal. Each time an ISSUE command is given, 
a 30-bit quantity is transferred to  the designated functional unit. Most 
units, of course, only utilize 15 bits. For 30-bit formats, however, the second 
parcel is also transferred a t  the ISSUE command. Following this minor 
cycle, a SKIP cycle is required in order to move beyond the second parcel of 
the issued instruction. 

The SKIP command is also useful simply for bringing instructions from 
the instruction stack to register U2 after Branch. This is true since the only 
action required of the SKIP command is to  cause all the housekeeping tasks 
of moving new instructions into position without actually issuing any. A 
typical sequence of minor cycles is given below to show the usage of these 
commands. 

ISSUE BRANCH 
Wait Branch 

SKIP 
r.,,,n 
af\ir 

Loads 1st instruction in U1 
ioaas i n a  nait ot 1st instruction 

in U 1  and 1st instruction in U2 

ISSUE 1st instruction 
SKIP Assumes 1st instruction is 30. 

bit format 

ISSUE 2nd instruction 
ISSUE 3rd instruction 

Wait Next Instruction Word 

This example shows an instruction word with a 30-bit instruction fol- 
lowed by two 15-bit instructions. It shows the usage of the SKIP commands 
which merely control the instruction “pipe” during GUing and skipping steps. 

Handling of the test for Branching in the instruction stack is compli- 
cated by the control of instruction issue. This complication arises from the 
conditional Branch instructions which can do one of the following: 

Loop 
Jump 

NO Branch-A conditional Branch, condition not met. 

-A conditional Branch, condition met, in the stack. 
-An unconditional Branch, or condition Branch, condition met, not in 

the stack. 

To test for the destination in the Stack, the contents of the program ad- 
dress register, P, must remain set equal to the address which contains the 
Branch instruction. Therefore, P is not changed until after the “third 
parcel” instruction is issued, that being the last possible location of a 30-bit 
Branch instruction in a word. 

An additional problem of the Branch is the condition of the issue control 
mechanism following a “fall-though,” or no-branch, condition. Instruc- 
tions, following the Branch instruction in the same instruction word, are 
held in the registers U1 and U2 after the issue of the Branch instruction. 
Then, if the branch condition is not met, these instructions are brought to 
ISSUE in the normal manner. As a result, the control over the instruction 
stack output must track directly with the ISSUE command. 

D. SCOREBOARD 

A unique and essential part of the 6600 Central Processor control is the 
Unit and Register Reservation Control, or the Scoreboard. What is in- 
tended by this design is the simultaneous operation of functional units on a 
single instruction stream. Many operations in these units are quite inde- 
pendent of others, due to  the relative simplicity of the instructions. It is 
often particularly apparent that a sequence of arithmetic or logical opera- 
tions can be executed simultaneously with a sequence of control or house- 
‘x%,epY’6 vy.Au”’vU0. ‘XbUY’, ..AsULuy*w ..- UY “-*“..I. -1 ..----A vvAL--”----- 

overlap is possible even in the single sequence. 
One major premise of the Scoreboard design is that each new instruc- 

tion be issued to its functional unit as early as possible in order to allow fol- 
lowing instructions to  be issued. In some cases, an issued instruction may 
be held up after issue awaiting input operands, while a following instruction 
may proceed without restraint. 

Three types of conflict can be described in the usage of functional units 
and registers, which must be resolved by the Scoreboard. 

1. First Order Conflict 

l-..--:-- ,,-,,+:,,, A -,:, ,,nmml- - A l l  hn L-, ,rhh;ph ,,,&Anrsh1p 

This is a conflict between instructions which require the same func- 
tional unit or the same result registers. 

Example one. Functional unit conflict 
X6 = X 1  + X2 
x5 = x3 + x4 
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Both instructions use the Add functional unit, a situation in which 
the second instruction must wait for the first to be completed. 

In the case of multiply or increment instructions, two units are pro- 
vided reducing the probability of this conflict. 

Example two. Result register conflict 
X 6  = X I  + X 2  
X 6  = X 4  * X 5  

Both instructions call for register X6 for the result, another situation 
in which the second instruction must wait for the first to be com- 
pleted. Although the example shown is a trivial case, it will be seen 
in later discussion that many nontrivial cases are possible. 

The control over this conflict is simply that of not issuing the second 
instruction until the first is completed. At issue time, the condition 
must be determined early enough to stop the ISSUE command. 

2. Second Order Conflict 
This conflict occurs when an instruction requires the result of a 
previously issued, and as yet uncompleted, instruction as a source 
or input operand. 

Example: 
X 6  = X 1  + X 2  
X 7  = X5/X6 

Register X 6  in this example is used as the result of the Add instruc- 
tion and then as the divisor in the Divide instruction. The second 
instruction is issued but held in the Divide Unit until result X 6  is 
....-J-- 
I sauy. 

The second order conflict does not halt issuing of instructions but is 
resolved by the scoreboard control over the functional unit. 

3. Third Order Conflict 
This conflict occurs when an instruction is called on to store its 
result in a register which is to be used as an input operand for a pre- 
viously issued, but as yet unstarted, instruction. 

Example: 
x3 = x1/x2 
x5 = x4 * x3 
X 4  = XO + X 6  

In this example the third order conflict on the use of register X 4  is 
a direct result of a second order confiict on register X3. Because the 
instructions are issued on consecutive minor cycles and because the 

Add function is much faster than Divide or Multiply, the addition is 
accomplished and ready for entry in the result register X4 well in 
advance of the start of Multiply. The second order conflict on 
register X3 causes the Multiply to hold until that input operand is 
ready. This holds up the entry of register X4 into the Multiply 
Unit also. 

Third order conflicts are resolved by holding the result in the func- 
tional unit. 

Scoreboard control thus directs the functional unit in starting, obtain- 
ing its operands, and storing its result. Each unit, once started, proceeds 
independently until just before the result is produced. The unit then sends a 
signal to the Scoreboard requesting permission to release its result to the 
result register. The Scoreboard determines that the path to the result reg- 
ister is clear and signals the requesting unit to release its result. The releas- 
ing units reservations are then cleared, and all units waiting for the result 
are signaled to read the result for their respective computations. 

DESIGNATORS 

The Scoreboard gets its name from the number of designators and 
identifiers used in performing the job of reservation control. Figure 75 on 
page 129 diagrams the number of designators associated with one func- 
tional unit. Shown is the Add Unit which is given the number 17 with func- 
tion designators, reservation identifiers and flags as described below. 

Fm 
tl 

Fi 
Fk 

-Function to be performed (ADD) 
-Designates register Xi for result 
-Designates register Xi  as addend 
-Designates register Xk as augend 

-. 

Qj 

Qk 

-Identifies the functional unit, by number, producing 

-Identifies the functional unit, by number, producing 
a result to be used as addend 

a result to be used as augend 

Read Flag j -A single-bit flag indicating that the addend is ready 
Read Flag k-A single-bit flag indicating that the augend is ready 

Xi -Identifies that the Add Unit, number 17, has reserved 
register Xi for its result. (Bi and Ai for other 
units) 

All functional units are assigned a number to be used in the identifiers Q 
for the units, X for the operand registers, B for the increment registers, and A 
f~ t h ~  A ~ & G s  regkiteis. These iiuduers are assigned as Io~~~ows. 
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Designator (Octal) 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 

Functional Unit 

Branch 
Increment 1 
Increment 2 
Shift 
Boolean 
Divide 
Multiply 1 
Multiply 2 

Read Storage Channel 1 
Read Storage Channel 2 
Read Storage Channel 3 
Read Storage Channel 4 
Read Storage Channel 5 
Fixed Add 
Add 

- 

The Scoreboard operation is described in two parts; first, placing reser- 
vations, and second, directing the read operand and store result operations 
of each unit. 

PLACING RESERVATIONS 

This portion of the Scoreboard operation is executed in four sequential 
steps a t  the time an instruction is issued. These steps are as follows. 

1. Reserve the functional unit, Set its “busy” flag, and enter the operating 

2. Set the register designators in the functional unit, Fi, Fj and Fk. 
3. Enter any previous result reservations on the entry operands, Qj and Qk. 
4. Set the result register identifier, Xi, Bi, or Ai with the functional unit number. 

mode (fm). 

Step one, SET UNIT BUSY, is rather straightforward except as the deter- 
mination of unit “busy” is made. As an example, two consecutive instruc- 
tions to  the same unit must be handled such that the second instruction 
ISSUE is disallowed. Since these are one minor cycle apart, the setting of 
unit “busy” flag by the first instruction followed by the test for busy by the 
second instruction must be accomplished in one minor cycle. 

Step two, SET F, transfers the i, j, and k fields of the instruction to the 
designators of the functional unit. These are then used to designate operand 
and result registers to be used by the unit. Figure 76 shows how these desig- 
nators are transferred from U1 to U2 and then to the respective functional 
units. 

Notice that the Branch instructions cause a right shift of the desig- 
nators i and j in register U1 to j and k respectively in register U2. This ma- 

I 1 

INSTRUCTION 

CONTROL 
I ISSUE t RESERVATIONS 

CENTRAL U- REGISTERS MEMORY 

(MAXIMUM) 

SCOREBOARD 
INSTRUCTIONS DESIGNATORS 

ISSUE 

*SET TI ml 1 
MULTIPLY I 

REQUEST 
RELEASE 

\ 
OPERANDS RESULT \ \ I 

ENTRY GO STORE 
’ 

READ OPERANDS 
CONTROL1 SCOREBOARD 

CONTROL 
READ OPERANDS * REGISTERS CONTROL I 

SET FLAGS 

I *SET 
Q 

I OPERANDS RESULT /Ktn 

&SET I I  I k l  t ISSUE El 
INSTRUCTIONS 

FIGURE 75 Reservation designators. 

neuver is convenient to allow a direct usage of the Increment and Fixed Add 
Units as partner units to the Branch unit for conditional branch instructions. 

Step three in placing reservations, SET Q, is essentially a copying opera- 
tion from one of the 24 XBA identifiers related to the 24 operating registers. 
The identifier contains the functional unit number of the unit which has 
reserved that register for a result. Since there are usually two Q identifiers, 
one for each input operand, there may be two independent settings. See 
Figure 77. Following this step, the essential link between a previous result 
and an input operand is established. 

Step four, the final step in placing reservations, SET XBA, places the 
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INCR I 

FIGURE 76 Set F 

f i ~ ~ ~ t i ~ ~ o l  :nit ZZZ-~C: k C,h: ~cE!SC~ G G G ~ Z ~ ~ :  with the i-e-dt iagkie~. 
Translations of the function to  be performed are necessary in order to select 
the correct register group, X, B or A, along with the correct register in the 
group. Note that the unit numbers were chosen such that only two bits are 
necessary for the B and A registers, whereas four bits are needed for the X 
registers. Only three units cause results in B and A registers, whereas up to 
ten “units” cause results in X registers. This, of course, includes the Read 
Storage channels into registers X1 through X5. The unit number generator 
produces the necessary unit numbers to be entered. In the case of Read 
Storage instructions, which produce a new result in registers A1 through A5, 
the A identifier is set with the Increment Unit number, and the partner X 
identifier is set to the Read Storage Channel number. See Figure 78. 

SET READ FLAGS 

sulk. The first activity in the functional unit is the simultaneous “reading” 
of input operands. The unit may not start until both operands are ready to 
be read. Both Read Flags must, therefore, be set. 

The conditions for setting a Read Flag are determined by the Q identi- 
fier associated with that input operand and by the Release signal from the 
functional unit identified by Q. The effect is to link the result of the previous 
operation with the input operand. The example used in the description of 
second order conflict is repeated here to show the effect. 

X 6 = X 1  + X 2  1-4 
X7 = X5/X6 t - - - H  

When the second instruction is issued, the third step in placing reserva- 
tions, SET Q, causes the unit number found in identifier X6 to be placed in 
the Qk identifier for the divisor. The unit number is, of course, 17 for the 
Add Unit, having been placed there at the time of issue of the first instruction. 

When the Add Unit requests release and receives permission, a Release 

1 t 

I 
ISSUE OX ISSUE OX 

A5 
A6 
A7 

I _  Q k  

BOOLEAN 

MULT I 
MULT I1 
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SCED 
ISSUE XBA-DES 

FIGURE 78 Set XBA 

signal is sent to all units, among them the Divide Unit. This is shown in 
Figure 79 

All Release signal lines are shown as they appear to the divisor input 
to the Divide Unit. The case in point is the Release signal from the Add 
Unit, which AND'S with the translation of the unit number held in Qk for the 
Divide Unit. Since the Qk identifier can hold only one unit number, only 
one Release signal is selected. Assuming the Q identifier is set to zero, mean- 
ing no wait is necessary, the Read Flag is set immediately after issue. 

Figure 79 also shows how the Release signals are actually sent to all 
Read Flag networks. The example of Release for the Read Storage Chan- 
nel 5 is shown going to the Q translation for unit number 15 on all nine units. 
This example appears to skip some Read Flag circuits, but it should be re- 
membered that the X Registers are not connected as input operands in every 
combination to all units. The k operand in the Increment Units and the 
j operand in the Shift Unit are noteworthy. 

When both Read Flags are set on any unit, the unit may be expected 
to start. However, it should be clear that several units could reach this 
conditinn sirniiltam~n.ol~!y. Fnr llnits :uh;& share dstn tr.dis (Chapter I<), 

FIGURE 79 Set read flags divide unit. 
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this would mean simultaneous traffic on the trunk. 
trunk priority condition also controls the start of the unit. 

Therefore, the data 

GO READ. 
READ .~ TRUNK 

RELEASE 

An additional factor in the Scoreboard control has to  do with the Re- 
lease signal. The release of the result to  the result register would be un- 
complicated were it not for the third order conflict and the result data trunk 
conflict. The third order conflict described before is repeated here. 

X 3 = X l / X 2  I-. 
x 5 = x 4 * x 3  t---t---j 
X 4 = X O + X 6  k--j 

In this example the third instruction is completed well in advance of 
the first two but cannot release its result to register X 4  until the previous 
Read is accomplished. 

Close examination of the example will show that the Read Flag for 
Multiply j input, corresponding to the X 4  input, is set and simply waiting for 
the k Read Flag. The k Read Flag is held up by a second order conflict. 
Note that the third instruction would not be issued if the Multiply j input 
Read Flag were not set since that would indicate a previous result to register 
X4 not yet completed. 

This is a form of proof that a Read Flag can be cause to  hold up the 
Release signal. Each register can be described as "all clear" if no Read Flags 
are set corresponding to that register. To generate the All Clear for each 
register, the Fj and Fk designators are translated to the register number and 
ANDed with the associated j or k Read Flag. 

These ALL CLEAR signals for each register are then cornhind with the 
tlallsiation of the result designator, Fi, for the unit to determine whether the 
unit should be allowed to release its result. 

Assuming that the unit is held back, some time later the Read Flag will 
be cleared as a result of its unit starting, thereby clearing the flag. The 
entire case is presented in Figure 80. 

GO READ 

E. REGISTER ENTRY /EXIT CONTROL 

The secondary control over data entering and leaving the registers is 
provided by a rather simple system. Entry to the X, B or A registers is a 
direct result of the Release mechanism described in the section on the Score- 
board. A "GO STORE" signal is generated by the release mechanism, direct- 
ing the requesting functional unit to transmit its result to the registers via 
its result trunk. At the same time, the result designator, usually Fi, is also 
sent to  the register end of that trunk. This designator is translated and con- 
trnl :" w ---I iiii&& - 3  to ciear the result register and transfer the data from the 

- a 
RESULT 

OPERANDS 

GO SJORE- 

- 
3 
U 

FI -M) 

- 

I I  I 
U I 

v) 111 Qk c 
% CLEAR 

I" 

I I 
UNIT BUSY GO READ 

FIGURE: 80 Request release block diagram. 

trunk to the correct result register. This entire operation is dependent on 
the fixed-time nature of the synchronous design of control functional units 

I A 6 W U  "I "I.".." ""IIIC. UC."UU "I "1,- C.""'J U"II"I"1 *"I .bfi 

isters X, B, and A. Note that the central storage entry trunk is also used by 
exchange jump for initial loading of these registers. Also note the five D reg- 
isters used to hold the read operands from central storage in case of the third 
order conflict case described previously. 

In  a fixed, synchronous manner similar to the entry control, the register 
exit control provides for the transfer of data to  the data trunks. Seven 
trunks are controlled as shown. 

For the Increment Units, four Exit Control Tags are shown since they 
may specify an A, B, or X register with the j designator and only a B register 
with the k designator. Thus, the four tags, GO READ Xi, GO READ Bj, GO 
READ Aj, and GO READ Bk are used to gate data on this pair of trunks. 

For the Multiply, Divide and Boolean trunk pair, only two controls 
are needed, GO READ Xi and GO READ Xk. 

Three control tags are needed for the Add, Fixed Add, and Shift trunk- 
pair because of the use of Xi and/or Bk for Shift. 

described previously. 

*..A An+- +-.l..lrc EX-.-- Q1 -h---.- dn+-3 -f +h- ---+--l *A- --m 
UI.U u..uu UA....*..U. 

All GQ READ s ~ d  C,Q STORE tsgs zre gpcpretpb hy the Sccrehnr\rrl 
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F. SUMMARY 
It should be remembered at  this point that this rather complex combi- 

nation of translation and flag networks is intended to detect and cope with 
the first order, second order, and third order conflicts described previously. 
It should be obvious that an excessive amount of hardware for these networks 
would make the scheme worthless. 

Actually, these networks, while complex, require less hardware than an 
average functional unit. To determine whether they are worth it, some 
examples are given below. Several simple rules are used in the timing of the 
examples, as follows. 

1. Consecutive instruction words from storage require a minimum of eight minor 

2. Double length instructions, 30 bits, require two minor cycles to issue. 
3. A functional unit is free one minor cycle after the result is placed in a register. 

The Appendix contains a comprehensive treatment of detailed timing consider- 
ations, of which the three above were picked to explain apparent anomalies. 

cycles. 

EXAMPLE ONE 

For a fist example the solution to  the following equation is timed. 

AX2 + BX + C = Y 

The program to perform this solution is given below. The chart lists 
six times by minor cycle count. These are: 

ISSUE - Relative time of instruction issue. 
START - Start of function. ’ 

RESULT - Function complete with result available. 
L’d!? plxE ~ ‘+it r22.’y +: re”cp. 

FETCH -Operand fetched from storage and available in X Register. 
STORE - Result stored in storage. 

I S R U F S  
S T E N E T  
S A S l T O  
U R U T C R  
E T L  H E  

T 

N 1  A1 = A 1  + K1  FETCHX 
FETCH A 

N2 X O = X l * X l  FORMX’ 

A2 = A2 + K2 

X6 = XO * X2 
A3 = A3 + K3 

FORM AX2 
FETCH B 

N3 A 4 = A 4 +  K4 FETCH C 
X3 = X3 * X1 
X5 = X6 + X3 

FORM BX 
FORM AX2 + BX 

N4 = x 5 + X 4  FUKM Y 
A7 = A7 + K5 STORE Y 

1 1 4 5 9  
3 3 6 7 1 1  

9 9 19 20 
10 19 29 30 
11 11 14 15 19 

17 17 20 21 25 
20  20 30 31 
21 30 34 35  

js 3s 39 40 
36 39 42 43 47 
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L. 

If sequential times are counted with no losses due to instruction fetch, 
the list shown at  the right would total 78 minor cycles, rather than the 46 
shown. Example one is shown in Figure 82 in a different form. 

---__. 
9 -. 

FETCH X 

FETCH A 
FORM X‘ 
FORM AX‘ 
FETCH B 
FETCH C 
FORM BX 
FORM AX’+BX 
FORM Y 
STORE Y 

I 

10 
46 MINOF 

CYCLES 

_.__ 

nxz+ 

SEQLLIJTIAL ( 

CYCLES 

80 I (  120 
MINOR CYCLES 

FIGURE 82 

EXAMPLE TWO 

The single solution shown in Example one can be repeated for a case in 
which both X and Y are considered vectors. A vector may be defined as a con- 
secutive series of floating point numbers in central storage. 

For this example the three values A, B, and C are considered constants. 
The solution can be conveniently described as an initial phase and a repeti- 
tive, or iterative, phase. The iterative phase can be held in the instruction 
stack for very high speed. The store address is presumed in register A7. 

This totals 71 minor cycles, covering one initial pass, and 99 repetitions 
of 41 minor cycles each, using the instruction stack, for a total of 4,120 minor 
cycles. Without parallel functions, the initial phase is 107 minor cycles and 
99 repetitions of 66 minor cycles each for a total of 6,641 minor cycles. 

EXAMPLE THREE 

An additional advantage can be obtained in Example two by making a 
slight modification of the “FORM Y’ and ‘ T E E  Y” i?st~zc5~ns. Epecifi- 

U F S  S R  
T E  N E T  

I 
S 

A S  I T 0  
R U  T C R  U 

E T L H E  

s 

T 

N1 A 1  = A 1  + K 1  FETCHX 1 1 4 5 9  
A2 = A2 + K2 FETCH A 3 3 6 7 11 

9 9 12 13 17 
11 11 14 15 19 

17 17 20 21 
B2 = BO+ K5 Set Vector Length 19 19 22 23 

N4 X O = X l * X l  FORMX2 25 25 35 36 
X6 = XO * X2 FORM AX2 26 35 45 46 
XO = X3 * X1 FORM BX 36 36 46 47 
A 1  = A 1  + B1 FETCH NEXT X 37 37 40 41 45 

N2 A3 = A3 + K3 FETCH 6 
FETCH C A4 = A4 + K4 

N3 B1 = BO+ 1 Set B1 to 1 

FIRST ITERATION 

N5 B2 = 82 - B1 DECREMENT B2 41 41 44 45 
X5 = X6 + XO FORM AX2 + BX 42 46 50 51 
X7 = X5 + X4 FORM Y 51 51 55 56 
A7 = A7 + B1 

GO TO N4 IF B2 # 0 BRANCH 

56 56 59 60 64 

60 - 72 

STORE Y 

N6 

N4 X O = X l * X l  FORMX2 72 72 82 83 
N6 = XO * X2 FORM AX2 73 82 92 93 
XO = X3 * X 1  FORM BX 83 83 93 94 

SECOND ITERATION 

84 84 87 88 92 A 1  = A 1  + B1 FETCH NEXT X 

N5 B2 = 82 - B1 DECREMENT B2 86 86 89 90 
X5 = X6 + XO FORM AX2 + BX 87 93 97 98 
X7 = X5 + X4 FORM Y 98 98 102 103 
A7 = A7 + B1 STORE Y 103 103 106 107 111 

N6 GO to N4 IF B2 # 0 BRANCH 104 - 113 

cally, these two are positioned at  the beginning of the iterative phase, as  
shown on page 140. 

This optimization produces an initial phase of 55 minor cycles and 100 
iterations of 26 minor cycles each for a total of 2,655 as against 6,641 minor 
cycles for the sequential equivalent. The last result can be accomplished by 
making 101 passes of the iterative phase or by adding the two required in- 
structions in location N7. Note that there is an initial result which should be 
ignored. 

I nese exampies are not considered to be speciai cases. EiigZy eiiicierii m. 
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I 
S 
S 
U 
E 

N1 A 1  = A 1  + K1 FETCHX 1 
A2 = A2 + K2 FETCH A 3 

N2 A3 = A 3 +  K3 FETCH B 9 
A4 = A4 + K4 FETCH C 11 

N3 B1 = BO+ 1 SETB1 t o 1  17 
82 = BO + K5 Set Length 19 

FIRST ITERATION 
N4 X 7 = X 5 + X 4  FORMY 25 

XO = X 1 *  X1 FORM X2 26 
X6 = XO * X2 FORM AX2 27 
A7 = A7 + B1 STORE Y 30 

N5 XO=X3*X1 FORM BX 37 
A1 = A 1  + B1 FETCH NEXTX 38 
82 = 62 - B1 DECREMENT B2 39 
X5 = X6 + XO FORM AX2 + BX 40 

N6 GO TO N4 IF 82 # 0 BRANCH 44 

SECOND ITERATION 
N4 X7 = X 5 +  X4 FORMY 56 

XO = X1 * X l  FORM Xz 57 
X6 = XO * X2 FORM AX2 58 
A7 = A7 + B1 STORE Y 61 

N5 XO=X3*X1 FORM BX 68 
A 1  = A 1  + B1 FETCH NEXT X 69 
B2 = 82 - B1 DECREMENT 82 70 
X5 = X6 + XO FORM AX2 + EX 71 

N6 GO TO N4 IF 82 # 0 BRANCH 73 

S R U F S  
T E N E T  
A S I T O  
R U T C R  
T L  H E  

1 4 ’ 5  9 
3 6 7 1 1  

9 12 13 17 
11 14 15 19 

17 20 21 
19 22 23 

T 

25 29 30 
26 36 37 
36 46 47 
30 33 34 - 38 

37 47 48 
38 41 42 46 
39 42 43 
47 51 52 

56 

56 60 61 
57 67 68 
67 77 78 
61 64 65 69 

68 78 79 
69 72 73 77 
70 73 74 
78 82 83 

82 

use of the instruction stack is perhaps unusual in programs generated by com- 
pilers such as FORTRAN. However, the presence of such a powerful mecha- 
nism also offers incentive for extending the compiler to take advantage of it. 
As you would expect, 6600 compilers have shown a steady improvement as 
more concurrency is introduced. In any event, the concurrency of functional 
unit operation is evident even without optimization. 

PERIPHERAL 
SUBSYSTEM 

VII 

As described in Chapter 11, the Peripheral Subsystem is made up of ten 
small processors and twelve standard channels. In following sections, these 
will be described, together with several key peripheral devices. 

A. PERIPHERAL PROCESSORS 

The processing requirements in an input-output section of any com- 
puter include the following. 

Transferring data between peripheral device and central storage. 
Controlling the initiation of peripheral device actions. 
Establishing priorities between devices. 
Buffering data between asynchronous devices. 
Interrupting the central processor for execution of priority tasks. 

This list is not exhaustive but illustrates the nature of the processing 
assigned to the ten small processors in the 6600 Computer. 

These Peripheral and Control Processors, or PPU’s, are constructed 
within the main frame cabinet of the 6600. This provides convenient use of 
identical logic and storage modules as in the central processor and central 
storage plus the shared use of the power and cooling system. It also allows a 
unique form of design, called the “barrel,” which is shown in Figure 83. 

Tfi.+?nrl nf incl_qcndently r~nnt,rgct.ed PPTJ’s t.hP hnrrnl r l n s i p  iitilizes a 
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network of registers to share one common arithmetic, logical, and distribu- 
tion system. The barrel contains, logically, ten positions, each one represent- 
ing a PPU. One position is labeled the “slot,” in which one step can be per- 
formed. Typically, a PPU instruction requires several steps for execution. 
Each step is a comfortable fit of the storage cycle, 1000 nanoseconds and the 
arithmetic, logical or data transfer cycle required, a minor cycle of 100 nano- 
seconds. For example, the sum of an operand from the PPU storage and the 
PPU A register reynirec &y In(! ~ Z ~ ~ : ~ C Z E &  f ~ r  the xithiiieiic bui i000 

nanoseconds for the operand storage reference. This convenient “fit” is em- 
phasized by the choice of ten PPU’s time-sharing the common slot. 

Once every minor cycle, 100 nanoseconds, alI information in the barrel 
is moved one position. The information for one PPU is therefore moved 
through the slot position once each major cycle. All ten PPU’s are time 
shared in this manner by the slot hardware, without degrading their 
performance. 

INSTRUCTION FORMATS 

Two formats are used in the PPU as shown in Figure 84. 

SHORT FORMAT I] [ d l  
6 6 

rn LONG FORMAT Id] I 1 
6 6 I2 

FIGURE 84 

The short format is held in one PPU storage location, whereas the long for- 
mat requires two consecutive PPU storage locations. These two formats 
allow a very flexible operand addressing scheme. 

A particularly useful property is the assignment of the first 64 PPU 
storage locations. These locations can be directly addressed by the d field of 
the short format. This is a fast operation and also uses only one storage loca- 
tion for the instruction. These locations can be conveniently used for tem- 
p~rz i~y  BtGi-iige, puhlte~a, iabies, and SO on, 

Other addressing combinations are described in the following list. 

d Implies d itself. 
(4 
(((3) 
rn 
m + (d) 
(rn + (d)) 
drn 

The contents of address d, one of the 64 initial storage locations. 
The contents of the location specified by (d). 
Implies rn itself used as an address. 
The contents of d are added to  rn to form a jump address. 
The contents of d are added to rn to form the address of an operand. 
An 18-bit quantity with d as the upper six bits and rn as the lower 

twelve bits. 

JUMPS 

The first set of instructions to be described are the Jump instructions. 
These instructions provide for conditional branches, with the destination 
relative to the current program address, and unconditional branches, with 
ihe destination formed by a base address plus index. 
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Time 
(Major Cycles) 

00 Pass 1 
01 Long Jump to m + (d) 3 
02 Return Jump to m + (d) 4 
03 Unconditional Jump d 1 
04 Zero Jumpd 1 
05 Nonzero Jump d 1 
06 Plus Jumpd 1 
07 Minus Jump d 1 

Long Jump, 01, and Return Jump, 02, utilize the rn field of the long 
format as a base address and one of the fist 64 storage locations as an index. 
Return Jump assumes that a long jump is stored a t  the destination address. 
Program address of the next instruction following the Return Jump, (P) + 2, 
is placed in the rn field of that assumed instruction. Program control is then 
transferred to the next location following the assumed Long Jump instruc- 
tion. Typical usage of this instruction will be as a “normal exit” from the 
program entered by Return Jump, as shown in Figure 85. 

p=0300 Gg:) RETURN JUMP 
Enters (PI + 2 = 030; 
Then branches to 14 

EXIT to 
originoting 
program 

IPr=14OO 1401 010d X EXIT 

1 402 - .  

1403 - 
I404 
1405 
1406 0371 Jump back to Exit 

- 

in location 1401, 
2 

FIGURE 85 

Unconditional Jump d and the four Condition Jumps utilize the current 
program address (P) as a base and the d field of the instruction as a signed 
relative index. If the d field is positive, the effect is to  branch forward by the 
amount of d. If the d field is negative, the branch is backward. The example 
in Figure 85, in which an Unconditional Jump, 0371, branches back to the 
“Exit,” shows a negative d field, 71. This is the equivalent of minus 6 octal, 
causing the program address P to be reduced from 1406 to 1400. 

The Conditional Jumps are used to test the current condition of the A 
Register and are self-explanatory. 

NO ADDRESS 

A set of instructions, classified as No Address, utilizes the d field or the 
dm field as constants. In these instructions no additional storage references 
are required beyond those needed to obtain the instruction itself. 

Time 
(Major Cycles) 

10 Shiftd 1 
11 Logical Difference d 1 
12 Logical Product d 1 
13 Selective Clear d 1 
14 Load d 1 
15 Load Complement d 1 
16 Addd 1 
17 Subtract d 1 
20 Load dm . 2  
21 Adddm 2 
22 Logical Product dm 2 
23 Logical Difference dm 2 

An implied destination, the A Register, receives the results of the above 
operations. In some cases, as described below, the A Register is also an input 
operand for the operation. 

10 

11 

12 

13 

14 

15 

16 

17 

Shift d 
This instruction shifts the contents of A right or left d places. 
If d is positive (00-37)8, the shift is left circular; if d is negative 
(40-77)8, A is shifted right open-ended without sign extension. 
Logical Difference d 
This instruction forms in A the bit-by-bit logical difference, or 
exclusive OR, of d and the lower six bits of A, leaving the upper 
twelve bits of A unaltered. 
Logical Product d 
This instruction forms the bit-by-bit logical product, or AND, of 
d and the lower six bits of A, leaving w m p s  in tho i~ppe twplvq 

bits of A. 
Selective Clear d 
This instruction clears any of the lower six bits of A where there 
are corresponding ones in d, leaving the upper twelve bits of A 
unaltered. 
Load d 
Thus instruction clears the A register and loads d. 
Load Complement d 
This instruction clears the A register and loads the complement 
of d, sign extended. 
Add d 
This instruction adds d (treated as a six-bit positive quantity) 
to the contents of the A register. 
Subtract d 
Thin instructin~ s&tr&- d (tre&,ed ‘n 2 si:: bit pcsiti.;:: y~zz 
tity) from the contents of A. 
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Only one major cycle is needed for the above instructions to fetch the 
instruction itself since no further storage references are needed. This, of 
course, means that the entire operation is accomplished in the one minor 
cycle slot time following the instruction fetch. 

The following NO ADDRESS instructions require two major cycles to 
complete the fetch of the long-format instructions. 

20 

21 

22 

23 

Load dm 
This instruction clears A and loads an 18-bit quantity consisting 
of d as the higher six bits and m as the lower twelve bits. 

Add dm 
Ths instruction adds to A the 18-bit quantity dm. 
Logical Product dm 
This instruction forms in A the bit-by-bit logical product, or 
AND, of the contents of A and the %bit quantity dm. 

Logical Difference dm 
This instruction forms in A the bit-by-bit logical difference, 
or exclusive OR, of the contents of A and the 18-bit quantity 
drn. 

DIRECT-INDIRECT-INDEX 

A set of instructions is included in the PPU’s which allow addressing by 
direct, indirect, or indexed modes. Direct mode means d is used as the ad- 
dress of PPU storage, specifying one of the lkst 64 storage locations. Indirect 
mode means the contents of the storage location, specified by d, are used to 
.$pci-fy the ntex-gz k&hi uf &a operand. Inciex mode means that the m 
field of the instruction serves as the base address of the operand, to be modi- 
fied by (d). If d = 0, the operand address is simply m; but if d # 0, then 
m + (d) is the operand address. 

30 
31 
32 
33 
34 
35 
36 
37 

Load (d) 
Add (d) 
Subtract (d) 
Logical Difference (d) 
Store (d) 
Replace Add (d) 
Replace Add One (d) 
Replace Subtract One (d) 

DIRECT 

Time 
(Major Cycle) 

2 
2 

40 
41 
42 
43 
44 
45 
46 
47 

50 
51 
52 
53 
54 
55 
56 
57 

INDIRECT 

Load ((d)) 
Add ((d)) 
Subtract ((d)) 
Logical Difference ((d)) 
Store ((d)) 
Replace Add ((d)) 
Replace Add One ((d)) 
Replace Subtract One ((d)) 

INDEX 

Load (m + (d)) 
Add (m + (d)) 
Subtract (m + (d)) 
Logical Difference (m + (d)) 
Store (m + (d)) 
Replace Add (m + (d)) 
Replace Add one (m + (d)) 
Replace Subtract one (m + (0 

3 
3 
3 
3 
3 
5 
5 
5 

3-4 
3-4 
3-4 
3-4 
3-4 
5.6 
5-6 
5-6 

For simplicity, these instructions are described in groups of three to 
show the three addressing options. Note above that each additional PPU 
storage reference to accomplish the indirect or index simply requires an ad- 
ditional Major Cycle. When d = 0 in the index case, no additional Major 
Cycle is needed. 

30 
40 
50 

31 
41 
51 

32 
42 
52 

33 
43 
53 

Load (d) 
Load ((d)) 
Load (m + (dN 
These instructions clear the A Register and load the twelve-bit 
quantity from storage, leaving the upper six bits of A zero. 

Add (d) 
Add ((d)) 
Add (m.+ (d)) 
These instructions add to the A Register the twelve-bit operand 
from storage, treated as a twelve-bit positive quantity. 

Subtract (d) 
Subtract ((d)) 
Subtract (m + (d)) 
These instructions subtract from the A Register the twelve-bit 
operand from storage, treated as a twelve-bit positive quantity. 

Logical Difference (d) 
Logical Difference ((d)) 
Logical Di::ereiice (IT -i- (bj j  
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These instructions form in A the bit-by-bit logical difference, or 
exclusive OR, of the lower twelve bits of A and the twelve-bit 
operand from storage, leaving the upper six bits of A zero. 

34 Store (d) 
44 Store ((d)) 
54 Store (m + (d)) 

These instructions store the lower twelve bits of A in the speci- 
fied PPU storage location. 

35 Replace Add (d) 
45 Replace Add ((d)) 
55 Replace Add (m + (d)) 

These instructions add the quantity from storage to A and store 
the lower twelve bits of the result a t  the same storage location. 
The resultant sum is left in A. 

36 Replace Add One (d) 
46 Replace Add One ((d)) 
56 Replace Add One (m + (d)) 

These instructions replace the quantity in the storage location 
with its initial value plus one. The resultant sum is left in A, 
destroying the previous contents of A. 

37 Replace Subtract One (d) 
47 Replace Subtract One ((d)) 
57 Replace Subtract One (m + (d)) 

These instructions replace the quantity in the storage location 
with its initial value minus one. The resultant difference is left 
in A, destroying the previous contents of A. 

CENTRAL PROCESSOR AND CENTRAL STORAGE 

Instructions are included in the PPU repertoire which allow each PPU 
to cause an Exchange Jump in the CPU and also to monitor the CPU program 
address. 

2600 Exchange Jump 
This instruction transmits the 18-bit quantity in the A reg- 
ister to the Exchange Jump mechanism of the CPU with an 
initiating signal. As described in Chapter VI, the Central 
Processor is interrupted; an exchange is made between the 
CPU Registers and Exchange Package in Central Storage at  
the location obtained from the PPU A Register; and finally 
the CPU is started on the new program. 

261j Monitor Exchange Jump (Optional) 
This instruction is provided as an option in conjunction with 
the Central Exchange Jump, CEJ. The d field of this short- 

format instruction is split into two octal digits, including the 
option designator (1) and a CPU designator (j), for use with 
the two-CPU 6500 Computer, Monitor Exchange Jump op- 
erates exactly the same as EXN, Exchange Jump above, only 
if the Monitor Flag, in the CPU, is cleared. The flag is then 
set, indicating that the CPU is in the monitor state. If the 
flag is set, this instruction is a PASS. Therefore, a confirma- 
tion routine is required involving a simple communication 
between the CPU monitor and the PPU. 

272 Read Program Address 
This instruction transfers the contents of the CPU program 
address register to the PPU A Register to allow PPU monitor- 
ing of the condition of the CPU program. 

Each PPU can access the Central Storage by single word or block trans- 
fer, using the following instructions. 

60 

61 

62 

Central Read from (A) to d 
This instruction transfers a 60-bit word from central storage 
to five consecutive locations in the PPU storage. The 18-bit 
address of central storage must be loaded in the PPU A Register 
prior to this instruction. The five twelve-bit portions of the 
60-bit word are disassembled from left to right and loaded con- 
secutively beginning at  PPU location d. 

Central Read (d) words from (A) to rn 
This instruction provides a block transfer from Central Storage 
to PPU Storage. The 18-bit address of the beginning word in 

this instruction. 
r,,=trd s+..--- -.._ + L --a a 
v=ilL* 

LL- n T T  A n - L - L - . .  .... I.-- ruiase iilwlr uc ludueu iii uie rFu n negisux prwi tu 

During this block transfer, the PPU program address is tem- 
porarily placed in PPU storage location 0 in order that the pro- 
gram address increment mechanism can be used to advance m. 
The PPU Q Register is used to decrement the contents of lorn- 
tion d. 

The block of central storage locations goes from address (A) to 
address (A) + (d) - 1. The block of PPU storage locations 
goes from addres  m to m + 5(d) - 1. See Figure 86. 

Central Write to (A) from d 
This instruction assembles five consecutive twelve-bit words 
from PPU storage into a 60-bit word and stores the word in 
Central Storage. The 18-bit address of Central Storage must 
be loaded in the PPU A Register prior to this instruction. The 
fist twelve-bit word appears as the left-most, or higher order, 
portion of the 60-bit word. 
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CENTRAL STORAGE 
ADDRESS 7 1  PPU STORAGE 

- 
(A) 

FIGURE 86 

63 Central Write (d) words from rn to (A) 
This instruction assembles a block of 60-bit words and writes 
them in Central Storage. The mechanics of the execution are 
identical with Central Read above with the exception of the 
direction of data flow. 

INPUT/OUTPUT 

All PPU’s have access to the twelve 1/0 channels in turn during their 
portion of time in the slot. At this time, data may be transferred or condi- 
tions sampled. 

Two flags are utilized for each channel in order to control the channel 
and to indicate its status. 

Active/Inactive Flag 
Each channel has this flag to indicate that it has been selected for 
use and is busy. 

Full/Empty Flag 
Each channel has this flag to indicate that the channel register 
contains a word. 

Each channel contains a register used for either direction of data flow. 
Data may pass between PPU’s through these channels if desired, using the 
PPU instructions. 

The following instructions are provided for sampling channel condi- 
tions. 

64 Jump to m if channel d active 
65 Jump to m if channel d inactive 

These instructions transfer the program sequence to storage 
location m if the condition of the active/inactive flag for channel 

d is “true.” Otherwise, the current program sequence is 
continued. 

66 
67 

Jump to rn if channel d full 
Jump to rn if channel d empty 

These instructions transfer the program sequence to storage 
location m, if the condition of the full/empty flag for channel d is 
“true.” Otherwise, the current program sequence is continued. 

Data transfer on the channels is controlled by instructions which pro- 
vide single word transfer or block transfer. 

70 
72 

Input to A from channel d 
Output (A) on channel d 

These instructions transfer a word between the A Register and 
channel d. 

71 
73 

Input (A) words to m from channel d 
Output (A) words from rn on channel d 

These instructions transfer a block of words between the PPU 
Storage and channel d. Similar to the Central Read and Central 
Write, the program address is temporarily stored in PPU storage 
location 0 so that the program address increment mechanism can 
be used to increment rn. The content of A is decremented to  
control the length of the block transfer. 

Control over the channel is provided by two PPU instructions. 

74 Activate channel d 
This instruction activates the channel specified by d. This sets 

channel to the 1/0 equipment connected. 

This instruction deactivates the channel specified by d. This 
clears the active flag for channel d and also signals “inactive” on 
the channel to the 1/0 equipment. 

Control of the 1/0 equipment connected to a channel is provided by 

the &i:,p fiag fer !j 3Ed &.c! sigp& “-...ti’:e” 0:: +,he 

75 Disconnect channel d 

two instructions. 

76 
77 

Function (A) on channel d 
Function rn on channel d 

These instructions transfer a twelve-bit word on channel d, either 
from A or the m instruction field, together with a “function” 
signal. 

Typical reaction to such functions is the setting or clearing of 
control switches in the 1/0 equipment. 
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Channel controls are very simple as can be seen in Figure 87. 
The two flags are set and cleared as shown both from the PPU and from 

the channel equipment. 
Included within the PPU logic for convenience is a Real Time clock 

which is available to all PPU’s on peripheral channel 12. This clock “ticks” 

FULL 

-INACTIVE 

TOIFROM 

TOIFROM 

PPU 

CHANNEL 

every major cycle, or one microsecond. The clock is, in fact, a twelve-bit 
counter which sweeps, or “starts over,” every four milliseconds. The operat- 
ing system can utilize this mechanism to construct a “day” clock or other 
timing counts. 

BARREL 

Four registers are contained in each position of the PPU barrel. These 
are: 

A Register 18 bits 
P Register 12 bits 
Q Register 12 bits 
KRegister 9bits 

The first two, A and P are explicitly defined and referenced in the PPU 
instructions. The other two, Q and K, are temporary holding registers pro- 
viding for various operations. The Q Register, for example, holds: 

The address of the operand during direct addressing, - The address of the address of the operand on indirect addressing, 
The peripheral address of data used during central read or write instructions, 
The upper six bits during constant mode instructions, 

* The channel number on all 1/0 instructions and channel jump instructions, - The shift count on shift instructions, 
The specific number of locations to jump on relative jumps. 

The K Register holds the six-bit function code, F, of the current instruc- 
tion, and a count of the number of major cycles taken. 

Short-format, no-address instructions do not use the K Register since 
the translation is performed directly on the instruction and the execution is 
completed in one cycle. 

The above values completely d e h e  the “state” of each PPU for use in 
the next slot time. When these data reach the slot in their turn, one instruc- 
tion step can be completed. 

Figure 88 is a diagram of the slot showing the major inputs, outputs, 
and functions performed. 

BARREL 

A ADDER 

ADDER 

K TRANSLATIONS I 
FIGURE 88 Elements of the slot. 

A storage address for a particular processor is taken directly from the 
barrel six minor cycles before that processor is ready to enter the slot. This 
allows time for operands to be obtained from storage to be used in the slot. 
Translation of K is also begun in advance of the slot in order to control the 
slot operation. 
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The A Adder is used to execute add, subtract, selective clear, logical 
product, and logical difference instructions. 

The Shift network is similar to that of the CPU, Chapter V. The shift 
is completed in parallel in one pass through the slot. 

The P Incrementer is able to add zero or one to P. In instructions which 
require several trips around the barrel, P is, of course, incremented only once. 

The Q Adder is used to compute relative addresses, indexed addresses, 
and to provide connective paths between P and Q. 

The K counter produces a trip count which controls the sequence of 
operations for each instruction. This count can be separately set to handle 
repetitive sequences, for example, for block transfers. 

CENTRAL READ/WRITE PYRAMIDS 

Assembly and disassembly of twelve-bit and 60-bit words is accom- 
plished in two pyramid networks. During Central Read operations, a 60-bit 
word enters the Read pyramid. In subsequent major cycles the PPU which 
initiated the operation removes twelve-bit words left to right; the process 
actually causes the remaining bits to move through the pyramid, a row a t  a 
time. This opens up the pyramid to another 60-bit entry. Since only one 
Central Storage access is allowable from all PPU’s at  one time, the words 
move through the pyramid in step. 

A similar operation is performed in the Write pyramid, with each PPU 
entering a t  the correct point depending upon the number of assembly cycles 
it has taken. Again, another PPU may make use of the pyramid and will 
keep in step. 

6. DEAD START 

A typical obstacle to the understanding of a complex instrument is the 
inability to discover the answer to the question, “How does it start?” This 
section is devoted to answering that question. 

A first assumption is made that there are a number of peripheral devices 
capable of loading the computer’s operating system. These may be: 

Magnetic tape 
Punched cards 
Magneticdisk 

A second assumption is made that a direct entry of “machine language” 
programs is possible from these devices. 

To activate the DEAD START sequence, the 6600 cabinet contains a 
panel containing several control switches and a 12 x 12 matrix of switches. 
See Figure 89. Also contained are switches for performing maintenance 
tests. 

FIGURE 89 
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In order to load an initial system program, two control switches are 
activated. The SWEEP/LOAD/DUMP switch is set to the LOAD position. A 
very simple “program” is then set up in the 12 x 12 matrix. Finally, the 
DEAD START switch is turned on momentarily, then off. 

While the DEAD START switch is in the “ON” position, a MASTER 
CLEAR/DEAD START signal is repetitively transmitted throughout the sys- 
tem. This is a one-microsecond signal and is transmitted every 4096 micro- 
seconds, until the DEAD START is turned off. This signal prepares the entire 
system for start by presetting and clearing flip-flops throughout the system 
logic. The signal also: 

Assigns each PPU to an 1/0 channel corresponding to its number; for example, 
PPU 0 to channel 0, PPU 1 to channel 1, etc. - Sets all 1/0 channels to Active and Empty. - Sets all PPU’s to an intermediate step of an INPUT instruction, waiting data 

Transmits a M A S T E R  C L E A R  to the peripheral equipment on each channel. 
Sets all PPU’s to program address 0. 
Sets location 0000 in all PPU’s to zero. 
Sets A for all PPU’s to an input word count of 10,000. - Sets the CPU to STOP. 

on the 1/0 channel. 

This pulse is originally generated from the Real Time clock which is a 
twelve-bit counter connected directly to the Major Cycle. 

Following this preparation, the DEAD START Synchronizer connected 
to 1/0 Channel 0 is activated. First action is a “Full” pulse on Channel 0 
with no data. PPU 0 receives the “Full” signal, stores the zeroes from Chan- 
nel 0 input register in location 0000, and sends an Empty pulse to the DEAD 
START Synchronizer. The DEAD START Synchronizer transmits the twelve 
words from the 12 x 12 matrix of the DEAD START Panel on Channel 0 to 
be stored in locations 0001 tlrTc@ %I4 (oct2) of PPC 8. Fdowing the 
last word, the DEAD START Synchronizer sends a disconnect on Channel 0 
which causes PPU 0 to exit from the Input instruction. 

The exit from an INPUT instruction, as described previously, involves 
recovering the program address from location 0, incrementing it by one, and 
beginning the program sequence at  the resultant location. Since the con- 
tents of address 0000 is zero, the initial program address is 0001. In other 
words, PPU 0 is caused to begin a t  the t b t  word loaded from the DEAD 
START panel. 

The twelve-word “program” thus loaded can be a considerable aid in 
very basic maintenance of the computer. To load the normal operating 
system, however, a program such as the following can be used. 

PROGRAM 

This program selects a magnetic tape unit for input, then waits for the 
tape unit to be manually activated. The typical initial program on the 

TABLE VI Dead Start Panel Settings 

(Bootstrap Loading of the System Tape for 6000 Series Tape Units Only) 

Memory’ Contents Action Generated Toggle Settings 

01 1410 
02 

730x 1 
Load (A) with lo8  001 100 001 000 
Output lo8 words starting at loca- 11 1 01 1 000 xxx 

03 0006 I 
04 750x 

05 7113 

06 0000 
07 
10 2060 

2020 

11 

12 
13 740x 
14 710x 
15 0000 

770x I 

tion 6 on channel x (processor 
x will store these in its memory 
beginning at location 0) 

Disconnect channel x (permits ex- 
ecution of program) 

Set to input mode (7770 words to 
location 0000 on channel 13) 

Select rewind tape on channel x 

Read up to 10,000 words in bi- 
nary mode on channel x 

Activate channel 
Set to input mode (channel x) 
Cleared during dead start 

000 000 000 110 
111 101 000 xxx 

111 001 001 011 

000 000 000 000 
111 111 000 xxx 
010 000 110 000 
111 111 000 xxx 

001 000 010 000 
111 100 000 xxx 
111 001 000 xxx 

* Locations at peripheral processor 0. 

magnetic tape is sufficient to “bootstrap” the remainder of the operating 
system. 

As this bootstrap program is entered, the remaining nine PPU’s are 
loaded through PPU -1.1 0. To accomplish -rill this, PPU 0 loads each channel acting 
as an input unit. wnen each r r u  contains a system “resident“ program, 
PPU 0 disconnects each channel, thereby causing each PPU to begin the 
“resident” program sequence. In the course of loading each PPU, PPU 0 
can also set location 0000 for each to a number other than zero. This will 
cause the PPU to begin a t  a location in the loaded program other than ad- 
dress 0001 and can be convenient. The CPU is, of course, started by an 
Exchange Jump as described previously. 

C. DISK STORAGE 

b o n g  the many devices which may be connected to a 6600 hput-  
output channel, an essential secondary storage unit is the 6638 Magnetic 
Disk Storage. This unit provides about 800 million bits of on-line storage 
in one cabinet (Figure 90): 

Storage is accomplished by magnetically recording on many flat disk 
surfaces. The read-write heads can be positioned to  a number of tracks with 
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a hydraulic mechanism. The heads are maintained a t  a very close spacing 
with the disk surface by means of an air bearing formed as a result of the 
surface shape of the head and the spinning disk. 

-. ~ .. 
ijisks are grouped in four “quadrants” using two vertically mounted 

spindles. See Figure 91. 

MOTOR a 
FIGURE rn 91 

POSlTlONER 4 LOWER 

MOTOR r‘i m 

Motors are mounted between each vertical quadrant on each spindle, 
directly driving each at  about 1200 revolutions per minute. Each quadrant 
contains eighteen disks with 32 data surfaces. Heads are mounted on arms 
connected to two “reactive” positioners, one for the upper pair of quadrants, 
and one for the lower pair. When positioning to a new track, the hydraulic 
mechanism causes all heads in the appropriate half of the cabinet to move; 
that is, upper or lower. Note that the movement of the head assembly in the 
left disk quadrant is counteracted by an opposite movement of the head 
assembly in the right disk quadrant. 

For convenience, the upper pair of quadrants can be considered separate 
and independent of the lower pair. The 6638 Controller thus has the ability 
to operate each half as separate disk units. The controller also allows con- 
nection to two independent 1/0 channels. These may be on separate 6600 
Computers, thereby providing access for both to common secondary storage. 

Data is stored in the 6638 Disk Storage in fixed length blocks of 64 cen- 
tral storage words of sixty-bit length. Each track contains 100 sectors of 
322 cells per sector with gaps between each sector to provide control space 
for headers and to provide ability to alter sectors. 

Twelve heads are utilized in parallel on a read or write operation. Three 
heads from each of four head pads are, therefore, operating together. (Note: 

Transistor mounted on header with leads bonded to posts. Ball-point pen at left. 
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There are six heads mounted in each head pad having access to one disk 
surface.) There are, therefore, 322 twelve-bit “bytes” transferred in one 
sector read or write. This is equivalent to a block 0€64,60-bit, central stor- 
age words with two extra bytes for control. This block, or data sector, is 
stored in the PPU controlling the Disk Storage, taking up 322 PPU storage 
locations. 

In long transfers, alternate sectors are transferred by the PPU. In this 
case, the PPU reads from the Disk into PPU storage, then block transfers to 
Central Storage. The PPU can then return to the Disk in time for the next 
alternate sector. Because a disk surface can contain a small number of flaws, 
it is convenient for the PPU to keep track of these flaws by “half-tracks.” 
These half-tracks refer to the two sets of alternate sectors present in one 
head position. 

Data files are also allocated within the disk storage unit on a half-track 
basis. This reduces the allocation work load on the PPU and tends to  en- 
courage longer transfers between disk and central storage. This last is a 
d e h i t e  value in efficiency. 

Positioning of the head arms provides access to 192 tracks per arm. 
Since there are six heads in one head pad mounted on each arm, this requires 
32 actual positions qf the arm. These characteristics are listed below for 
convenient reference. 

1. 72 Disks, 64 used for data. 
2. 128 surfaces for data, with six heads per surface. 
3. 12 heads parallel. 
4. Positioning time-25 milliseconds minimum to 150 milliseconds maximum. 
5. Latency (time for one revolution)42 milliseconds. 
6. Sector size-322 cells per track. 
7. Sector gap-108 cells. 
8. Sectors per revolution-100. 
9. ?tvo positioners. 32 positions Pwh 

10. Data per position, each positioner-12.4 million bits. 
11. Capacity total-792 million bits (for this sector size). 

A normal sequence of control by a PPU over the Disk Storage is as 
follows. 

1. Connect and Status 
This control step is initiated by a “Function” instruction in the PPU. The 
function code is transmitted to the Disk Storage Controller over the 
peripheral channel and attempts to connect the unit to the channel. If 
the other access channel already has control of the unit, the connect is 
not achieved. 

If connection is made, subsequent functions and data transfers can be 
performed. If connection is not made, only status can be read. 

2. Activate Channel 
This control step is initiated by the PPU instruction “Activate Channel 
d” which causes the Disk Storage Controller to present status informa- 
tion on the input channel. A request status function may also be inserted 
here with more complex configurations on the channel. 

Status information includes: - Current sector address 
* Parity error 

Not ready - Not connected 
Lost data 

This PPU “Function” instruction causes the positioning mechanism to 
seek one of 32 positions. 

This PPU “Function” instruction causes the selection of one of 32 head 
groups. Each head group contains twelve heads for twelve-bit parallel 
operation. 

This step is initiated by a PPU block transfer, either input or output, of 
one sector. Because Disk Storage requires a minimum of one sector for 
read or write, the block transfer length is set to 322 twelve-bit words, by 
the program. 

When a new position select is received, step three above, the unit verifies 
that the correct track is found before a “ready” status is established. There- 
fore, a more elaborate sequence must be used to verify position. 

The Disk Storage Unit is an essential component in the operation of the 
6600 computing system. Typically, one PPU is assigned to transfer data as 
needed between Disk Storage and Central Storage. Access time to the 
correct position is probably the most serious throughput limitation in using 
this unit. Although latency can also be a factor, transfer of more than one 
sector of 64 central storage words is preferred if possible. This, of COW*, 
depends on the nature of data files being stored. 

3. Select Position 

4. Select Head Group 

5. Read (or Write) 



SYSTEMS OPERATION 

Vlll  

In order to function at all the Control Data 6600 requires an operating 
system. During development of the computer, an experimental operating 
system was also developed. This was called the Chippewa Operating Sys- 
tem, referring to the Chippewa Laboratory of Control Data. This system 
has formed the nucleus of later operating systems for the 6600. Some of the 
interesting features of the Chippewa Operating System are discussed in this 
Chapter. I t  is not within the scope of this book to give a complete exposition 
of the 6600 operating system. 

It should be noted that the operating system described here is one of 
many that might be conceived for the 6600. Other systems may attempt 
different emphasis on the handling of jobs and resources. 

A. FILES 

Information, both programs and data, may enter and leave the com- 
puting system through the use of files. For illustration, the punched card 
reader, the disk storage unit, and the printer are of interest. 

An INPUT FILE is established on the disk storage unit from the punched 
cards being read. The PPU’s are very conveniently used for this purpose. 

Similarly, on completion of a job an OUTPUT FILE is established on the 
disk storage unit. A disposition is assigned to this output file, such as PRINT, 
PUNCH, PUNCH BINARY, and so on. 
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A collection of input files can form an input queue just as a collection 
of output files can form an output queue for printing, punching, and so on. 

It is convenient, if not essential, that a common set of definitions be 
used in such files in order that they may be transferred from one device to 
another. In the Chippewa Operating System, file names must begin with 
an alphabetic character and may contain up to seven alphanumeric char- 
acters. Except for a magnetic tape file which may have more than one file 
mark, files consist of a single physical file divided into logical records. A 
logical record consists of a number of 60-bit words containing either coded or 
binary data. The form of storage and the method of separating logical 
records depend on the equipment. 

This definition of logical records makes it possible to have equivalent 
forms of file on several devices, taking advantage of each form of storage. 

Card Files use a format as follows, which allows the use of both binary 
and coded cards. Holes are punched in column 1 in the rows listed. 

Rows 7, 8, and 9 
Rows 6,7,8, and 9 
Rows 7 and 9 
Rows 7 or 9, not both 

End of logical record 
End of file 
Binary card 
Codedcard 

This allows up to fifteen central storage words on a binary card, starting 
a t  column 3. For binary cards, a word count is included in column 1 and a 
checksum in column 2. Column 80 includes a binary serial number. 

Coded cards are translated on input from Hollerith code to display code 
and packed 10 columns, or characters, to a central word. 

Disk files make use of the efficient storage packing of the disk storage 
unit. The alternate sectors of the Disk Storage make up a half-track. Stor- 
age for a disk file is reserved by the monitor in half-tracks as needed. Each 
disk file must start a t  the first sector of a half-track. When a half-track is 
full, the file is continued at  the fist sector of another half-track. 

Tnzc contrd 2yt, are recorded at  the beginning of each sector. The 
h t  provides linkage data to the next sector. If the file is continued on the 
same half-track, this first byte contains a sector number. If the file is con- 
tinued on a new half-track, this fist byte contains a logical half-track num- 
ber. If no further information exists in the file, this first byte is zero. The 
second control byte specifies the number of central storage words of data in 
the sector. End-of-logical record is indicated if this number is less than 64. 
Both control bytes are zero for end-of-file. 

The operations which may be performed on a file include: 

Read-coded or binary, 
Write-coded or binary, 
Backspace, 
Write end record, 
Write end file mark. 

B. TABLES 

All  PPU requests for input-output involve a set of tables defining the - _  - .  

nature of the file and where it is stored. 
A central program may call for an 1/0 operation by a simple message 

left in its program space. This message is scanned by a PPU acting as system 
monitor (Section D, this Chapter). The message includes the program name 
and other pertinent information. 

A portion of Central Storage is utilized to maintain tables and com- 
munication areas for system control purposes. Thisis called central resident. 

The central resident contains an equipment status table EST which 
contains an entry for every equipment connected to peripheral channels. 
Each entry contains: 

Address of control point (Section D, this Chapter) to which this equipment is 

Channel number to which equipment is attached, 
Equipment synchronizer and unit number, 
Equipment type code; such as, tape, disk, etc., and 
A ready bit. 

currently assigned, 

The central resident also contains a channel status table CST which 
relates the current assignment of PPU’s to  channels. 

The name and status of all files are stored in the central resident area 
as well. Two central storage words are used for each file in the table, the first 
word belonging to  the file name table FNT and the second word belonging to 
the file status table FST. 

The Ikst word entry, FNT, contains: 

File name of up to seven alphanumeric characters, starting with a letter, stored 

File type, may be one of four types. 
in display code. 

0 INPUT file-stored form on disk 
1 OUTPUT file-stored form on disk 
2 COMMON file-may be passed from job to job 
3 LOCAL file-discarded at end of job 

priority. 
Control point number (Section D, this Chapter). 

The second word entry, FST, contains a pointer to the equipment status 
table EST identifying the device and other data as follows. 

DISK Equipment number, pointer to EST 
First track of file 
Current track of file 
Current sector 
Last buffer status interlock 
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t IN 3 OUT 

TAPE Equipment number, pointer to EST 
Last block number 
Last buffer status interlock 

Equipment number, pointer to EST 
Card count in record 
End of job flag 
Last buffer status interlock 
Equipment number, pointer t o  EST 
Last buffer status interlock 

CARD 

PRINTER 

The above tables provide very flexible system control over 1/0 opera- 
tions since equipment can be allocated symbolically. An operation on a 
named file is performed when the file name, location of central storage 
buffers, and a code for the operation are specified. A PPU can look up the 
name in the file name table FNT and the equipment number from the file 
status table FST and perform the requested operation. When the operation 
is complete, the number one is added to the operation code, which is initially 
even, and entered into the last buffer status area of FST. This serves as an 
interlock so that only one PPU at  a time uses the file. 

C. CIRCULAR BUFFER FOR 1/0 

For transferring files between 1/0 and central storage, a PPU may call 
for a circular buffer program labeled CIO. The user central program specifies 
a file name and operation code, plus information about the circular buffer in 
central storage; then CIO performs the operation. 

Before the central program calls for CIO, five central storage words are 
prepared as follows. 

- Word iiemams 

WORD 1 File Name Op-code Name 
2 - FIRST Beginning address 
3 - IN Current input address 
4 - OUT Current output address 
5 - LIMIT Last address -I- 1 

The circular buffer and the buffer parameter area (above) must be 
within the field length of the job, and addresses are relative to the job refer- 
ence address RA. 

A central program can then call on C10 by entering in its message area, 
location RA + 1, the code CIO and a pointer to the buffer parameters. 

System monitor detects this CPU message and fhds a free PPU to 
perform the task, then clears RA + 1 to signal the CPU that the circular 
buffer is begun. 

The processing flow is shown for CIO in Figure 92. 

Partially fliled buffers 

FIRST 

IN = OUT 

LIMIT 
empty buffer 

FIRST 

IN=OUT-1  
OUT 

LIMIT 
full buffer 

FIGURE 92 Circular buffer 1/0 (CIO) processing flow. 

The circular buffer is used in either direction. The PPU may load the 
buffer and the CPU empty it, or the CPU may load and the PPU empty it. 
As far as the buffer is concerned, though, OUT defines the address for extrac- 
tion of data from the buffer, and IN defines the address for entry of new data. 
As data is extracted, OUT is stepped around the buffer but never beyond IN. 

Since the buffer parameters are located within the job space, the central 
program can step along with the PPU as long as the buffer is not exceeded 
or as long as OUT never exceeds IN. 

A job is made up of one or more CPU programs which are executed 
with data files. Jobs are processed in three sequential, but independent, 
stages: 

Input 
Execution 
output 

The multi-programming nature of the operating system allows many 
jobs in the input or output stages of processing. Seven jobs may be in the 
execution phase and are handled by control points. Figure 93 illustrates the 
system elements in use in this “three phase” job processing. 

The system reads an entire job from the card reader, using one of the 
“pool” PPU’s and stores it as an input file on the system disk. Many jobs 
may be entered in this manner to  form an input queue. Typicdy, m inpllt, 
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FIGURE 93 

file is made up of three logical records; control cards, program cards, and data 
C a r d s .  

The system executes a job independently of the job input step, by 
bringing the job to a controlpoint. Once in a control point, the job proceeds 
by following the directives of the control cards (in the input file in disk stor- 
age). During ~x~ci i f ion ,  the system z c e ~ z ~ d z t ~  ziitpiit data UII the system 
disk. 

When the system has completed or has processed the last control card 
for a job, i t  changes the file of accumulated output data to  an output file. A 
disposition, such as PRINT, PUNCH, etc., is assigned. Output files produced 
in this manner make up an output queue. 

E. SYSTEM MONITOR MTR 

The operating system functions under the overall direction of the sys- 
tem monitor program MTR, located in PPO. This program repeatedly scans 
the communication linkages in the central resident area for requests for 
monitor action from the CPU or from PPU's. 

MTR is used in the assignment and release of all PPU's data channels, 
disk storage, and other 1/0 equipment. 

Communication between MTR and the PPU's is accomplished through 
ten PPU communication areas in central storage. Each communication area 
contains: 

Word 0 -processor input, 
* Word 1 -processor output, - Words 2-7-message buffer. 

A PPU idles in its resident program as long as word 0 is cleared. MTR 
enters a control word in word 0 of the selected PPU communication area in 
order to  call a transient PPU program to that PPU. The resident peripheral 
program of the selected PPU senses the processor input entry in word 0, 
locates the called program, and loads it into PPU storage. 

After loading, the PPU resident program then jumps to the beginning 
of the transient program. Following completion of the transient program, 
word 0 is cleared. 

A PPU may communicate a request to MTR by entering a value in its 
word 1. A request too long for a single location is continued in the message 
buffer. MTR repeatedly scans the communication area; when a message is 
found, MTR jumps to a subroutine to process the request, then continues 
scanning. 

F. CONTROL POINTS 

As many as seven jobs may be active in central storage at  one time. 
Each active job is assigned to a controlpoint area which contains all informa- 
tion necessary to control the job and to resume operation after interrupt. 

A job is brought to a control point by the system monitor MTR in order 
to begin the execution phase. Each control point contains data as shown in 
Figure 94 using 2GO iocizdj cenirai sioiuge addrsstli. 

A number of conditions are possible for a job in a control point, such as: 
See page 170. 

A Active 

X Waiting recall 
B-G Waiting for execution 

Blank No requirement for CPU 

Conditions A through G represent a queue of central jobs with A in execution 
and the rest waiting. 

Condition X, waiting recall, arises by an explicit action of the job while 
it is being executed in the CPU. This action communicates directly to the 
monitor to temporarily relinquish control. This may be used, for example, 
to buffer I/O. By examining a communication word in central storage, the 
central program can determine the progress of input-output. If a point is 
reached where further progress is temporarily impossible, the central pro- 
gram may halt and activate the recall condition. 
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When a PPU has completed the 1/0 task or after a fixed time, the mon- 
itor is alerted to recall the control point. The control point is converted from 
X status and a search is made for control point priority to determine if the 
control point should be entered into the stack. 

Storage is allocated to jobs at control points so that the order is the same 
as the control points themselves. Moves of storage are made after comple- 
tion of a job only as needed to accommodate to the requested space of a new 
job. 

A PPU attached to a control point can request or release storage via the 
monitor program MTR. This commonly takes place when a new job is 
brought to the control point with a different requirement than the previous 
job occupying that control point. The PPU specifies the space required, as 
determined from the job control cards. 

For the actual movement of storage, where needed, the CPU is called on 
to perform a storage move program from the system library. 

G. SUMMARY 

There are, of course, many other interesting details of the Chippewa 
Operating System and of the systems which evolved from it. The methods 
used are intimately related to  the structure and organization of the 6600 
Computer. The short discussion in this chapter should give some insight 
into the use of PPU’s for system control over input output. A single monitor 
PPU with a number of “worker” PPU’s can perform with considerable flexi- 
bility while maintaining simplicity and discipline. 

A key hardware feature is the CPU Exchange Jump which provides 
very rapid and simple interruption of one job and transfer to a new job. An- 
other hardware feature, which affects and determines system strategy, is the 

cer,tra; &o;- 
age and extended core storage. 

For brevity, no discussion was given here to assembly language or 
higher level language, such as FORTRAN. This operating system is struc- 
tured to  facilitate such language usage as well as to perform on-line diagnostic 
and maintenance programs. 

It should also be obvious that many other considerations could be dis- 
cussed. Some of these involve: 

>ligh rztc =f trgnsfer .+;tkLL. stGr.&ge, &nd p&-ticd&-$ 

* Extended core storage. 
Central Processor monitor. - Multiple systems. 
Overlays and segmentation. 
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6600 TIMING NOTES 

1. The times given for the CPU are computational times-the time needed 
after the execution start until the result is computed and stored in the 
result register. Times are given in minor cycles (1 minor cycle = 100 
nanoseconds). 

2. A functional unit cannot be reused until one minor cycle after any exe- 
cution. (Result is stored by Entry Control during the minor cycle after 
release.) 

3. A result register value may be used as an operand to another instruction 
as soon as the result has been stored into the register (same minor cycle). 
This result register will not be freed for use as a result register of another 
instruction until one cycle after the result has been stored into that reg- 
ister. (No trunk priority is considered.) 

4. Instructions are issued to the functional units if: 
a. The word containing the instruction is in the stack, 
b. The functional unit(s) needed are free, and 

If these conditions are not met, all further instruction issues are held 
until they are satisfied. Each issued 15-bit instruction requires one 
minor cycle before the next instruction is available for issue. Each 
issued 30-bit instruction requires two minor cycles before the next in- 
struction is available for issue. 

5. Execution within a functional unit does not start until the operand(s) 
are available. The two operands required are fetched from the registers 
a t  the same time (one operand is not loaded while the unit waits for the 
second operand). 

6. In instructions 02-07, where more than one functional unit is used, the 
instruction is not issued until both functional units involved are free. 

7. Times given for instructions 01-07 and 50-57 do not consider any mem- 
ory conflict conditions. A practical average increase in time due to con- 
fiict may be taken as under ten percent. 

b. ,, Thc L I I b  r , x y . l f  LL."-Y rc&ctoviQ\ 'b~'"""',", m , p d D d  -- qrp fro@ ^___. 
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8. In instructions 50-57, if i = 1,2  . . . 5 (load from central storage instruc- 
tions), the Xi register value is not available until 8 minor cycles after the 
start of the instruction execution (assuming no memory conflicts). 
When two load instructions begin execution one minor cycle apart, a t  
least one extra minor cycle is required for execution of the later instruc- 
tion. Therefore, the second executed instruction would require 9 cycles 
for the load, 4 cycles for the increment unit result to the A register. 

9. In instructions 50-57, if i = 6 or 7 (store to central storage instructions), 
the XI register is not available for a result register until 8 minor cycles 
after the instruction begins execution (assuming no memory conflicts). 
When two store instructions begin execution one minor cycle apart, one 
extra cycle is required for execution of the later instructions. Therefore, 
the second executed instruction would require 9 cycles for the store, 4 
cycles for the increment unit result to the A register. A store instruction 
checks the X register before being issued. The X register is available as 
an entry operand register while the store is taking place. 

10. When executing sequential instructions that are not in the stack, the 
minimum time is one word of instructions every 8 cycles. The time of 
issue of the last parcel of an instruction word to the time of issue of the 
first parcel of the next instruction word (while executing sequential in- 
structions that are not in the stack) requires a minimum of 4 cycles. If 
the last instruction in a word is a 30-bit instruction, a minimum of 5 cycles 
is required from the time of issue of this instruction to the time of issue 
of the first instruction of the next word. 

11. All 03 branches made within the stack require 9 minor cycles. An 03 
branch to the next sequential word is recognized as a branch within the 
stack and requires 9 minor cycles. 

12. wt,,.. - L..--L - .A  - ~ J L  .. llGil a ulallL1l uub ul t,llt: stack ;S taken, i5  minor cycies are normaiiy re- 
quired for an 03ijk instruction and 14 minor cycles for other branch in- 
structions (considering no memory conflicts), timed from the start of the 
branch instruction execution to the availability of the branched-to word 
instruction to a functional unit (instruction ready for issue). 

13. Eleven cycles are required for the 03ijk instructions when the branch 
is not taken (time from branch execution to issue of the next instruction) 
if in the stack or if falling through to an instruction within the same word. 
Out of stack fall-through to the next word takes 14 cycles. 

14. Ten cycles are required for44ijk - O7ijk instructions when the branch is 
not taken (time from branch execution to issue of the next instruction) 
if in the stack or falling through to an instruction within the same word. 
Out of stack fall-through to the next word takes 13 cycles. 

15. Neither increment unit may be involved in a load operation if a store 
operation is to be issued, and neither increment unit may be involved 
in a store operation if a load operation is to be issued. The sequential 
loading of instruction words does not affect the load/store conditions of 
the increment units. 

16. The operand registers are available to more than one functional unit in 
the same minor cycles if the units are in different groups. 

GROUP 1 GROUP 2 GROUP 3 
Divide Add Increment 1 

Shift Increment 2 Multiply 1 
Long Add Multiply 2 

Boolean 

17. The time needed for a functional unit to operate on indefinite, out-of- 
range or zero values is the same as for normal, in-range values (ie., no 
gain or loss in execution time due to a unit recognizing an indefinite oper- 
and and setting an indefinite result). 

18. An index jump instruction (02) will always destroy the stack. If an un- 
conditional jump backward in the stack is desired, an 0400k instruction 
should be used (to save memory access time for instructions). 

19. A return jump instruction (01) will always destroy the stack. 

20. Functional unit times given on the end papers for CPU timing are meas- 

21. Instruction times given on the end papers for PPU timing are measured 

ured in minor cycles of 100-nanosecond duration each. 

in major cycles of 1000-nanosecond duration each. 



INDEX 

A 
Accept Bus, 48-49 
adder entry: make up, 85-88 
adder network, 85-88; output, 88 
additive adder, 64, 93 
additive merge tree, 90-91, 97-98 
Add Unit, 77-88; adder network, 85-88; 

double precision result, 81; execution 
time, 77; exponent calculation, 
82-84; instructions executed in, 77; 
right shift network, 84-85; single 
precision result, 81 

air cooling, 4 
alignment shift, 84. See also right shift 

network 
AND. 23-24 

B 
back panel wiring, 5 
banks, 16; in Central Storage, 39 
barrel, 141-143 
basic circuit properties, 19-36; DCTL 

(Direct-Coupled Transistor Logic) 
logic circuits, 21-24; logic symbols, 
24-28; packaging, 32-36; silicon tran- 
sistors, 19-21; transmission lines, 
28-31 

block transfer, 54 
Boolean functions, 60 
Boolean unit, 59-63; execution time, 60; 

bootstrap, 157 
borrow, 64-66 
borrow generation, 66-67; in Add Unit, 

borrow pass, 66-67; in Add Unit, 83,86-88 
Branch Unit, 111-114; instructions exe- 

cuted in, 111-112; instruction stack, 

83, 86-88 

112; partner units, 112; Return 
Jump, 113-114 

buffer register: and instruction stack, 
120, 121 

building block approach, problems of, 5 
busy flag, 128-130 

C 
cables, 32 
carry. See borrow 
carry-save network, 91,92; scheme, 93-97 
Central Processor (CPU), 9-10, 11-13 
Central Processor control, 117-140; Ex- 

change Jump, 117-120; instruction 
fetch, 120-123; instruction issue, 
123-125; register entry/exit control, 
134-136; Scoreboard, 125-134; sum- 
mary, 137-140 

Central Processor functional units, 
57-116; Add Unit, 77-88; Boolean 
Unit, 59-63; Branch Unit, 111-114; 
Data Trunks, 69-71; Divide Unit, 
101-105; ECS Coupler-Controller, 
114-116; Fixed Add Unit, 63-69; In- 
crement Units, 105-111; Multiply 
Unit, 88-101; names of, 57-58; Shift 
Unit, 71-77 

Central Storage, 15-17; design considera- 
tions, 15; properties, 16 

Central Storage banks, 39 
Central Storage: CPU references, 110-111 
Central Storage cycle, 43-44 
Central Storage: ECS (Extended Core 

Storage) transfers, 114-116 
Central Storage System, 37-56; ECS, 

53-55; ECS Coupler-Controller, 
55-56; general techniques, 37; inter- 
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leaved storage, 44-47; storage bus 
system, 51-53; storage module, 37-44; 
Stunt  Box, 47-51 

Central Storage: read/write pyramids, 
154 

chassis, 34-36 
chassis interconnection, 29 
chassis: Central Storage, 38-39 
Chippewa Laboratory, 163 
Chippewa Operating System, 164 
circuit packaging, 33 
circular buffer program, 166-167 
clear/set network: and flip-flop, 26, 27 
clock oscillator, 32 
coaxial transmission circuit, 29, 30 
coaxial cable connections, 30-31 
coefficient, 77-78 
coincident current, 37, 39-40 
complex module approach, 6 
computer, motivation for, 1-4 
computer: justification for large, 4 
conflicts, 125-127 
Control and Peripheral Processors, prop- 

erties of, 10 
control system, 7 
Courant Institute, 3 

D 
data control, entry and exit, 134-135 
data transfer, 14 
Data Trunks, 69-71; priorities in, 71 
DEAD START, 11, 154-157; program for, 

designators, 127-128 
destructive readout storage (DRO), 41,42 
Direct-Coupled Transistor Logic circuit 

(DCTL), 21-24; ground rules for use, 
25 

156-157 

disk half-track, 160 
disk sector, 159 
disk storage, 5, 157-161; control by PPU, 

disk track, 159 
Divide Unit, 101-105; -execution time, 

101; exponent calcula@on, 104-105; 
instructions executed in;iOl; round- 
ing in, 105 

double precision: add, 81; multiply, 88-89 

160- 161 

E 
end-around carry, 64 
end-around borrow, 83-84, 104. See also 

end-around carry 
epitaxy, 20-21 
error mode, 118 
example programs, 137-140 
Exchange Jump, 11, 116-120; and CPU, 

118-119; effect in PPU, 118; effect on 
ECS transfer, 116; execution time, 
118; interrupt, 55; usefulness, 120 

Exchange Jump interrupt, 55 
exchange package, 118 
exponent, 77-78; bias, 78 
exponent calculation: in add, 82-84; in 

divide, 104-105; in multiply, 98-99 
Extended Core Storage (ECS), 17,18,53, 

54; Coupler-Controller, 17-18, 114- 
116; organization, 17-18; properties, 
17; storage hierarchy, 53 

ECS Coupler-Controller, 114-116; in- 
structions executed in, 114; inter- 
rupts, 116; timing, 115-116 

ECS timing, 54-55 
ECS word length, 54 

F 
fall-through, 125 
fan-in. See loading 
fan-out. See loading 
Fernbach, S., 2-3 
ferrite magnetic cores, 4, 37, 39 
Fieid Length, 60, ii8; ECS, 53, 56 
Fixed Add Unit, 63-69; block diagram, 

67-68; instructions executed in, 68; 
partner to Branch Unit, 68-69 

fixed-point numbers, 78 
flip-flop, 26-28 
floating point numbers, 78 
floating point: addition and subtraction. 

See Add Unit; divide. See Divide 
Unit; format, 77-78; multiply. See 
Multiply Unit; nonstandard values, 
78-79; normalize. See Shift Unit; 
scaling instructions, 72, 77-78 

Freon cooling, 5, 34-35 
function translation, 122 
functional parallelism, 1, 5, 6, 12, 57, 58 

functional units, 6, 12-13 
functional overlap, 7 

G 
germanium transistors, 4, 19 

H 
Harrison, M. C., 3-4 
hopper, 48-50. See ako Stunt  Box 

I 
inching, 121 
increment addition, 11 1 
increment functional units, instructions 

for, 106 
Increment Units, 105-111; addition in, 

111; as partner to  Branch Unit; in- 
structions executed in, 106-110; 
storage references, 110-111 

indefinite value, 78-79; in multiply, 99 
indexing operations, 105-106 
infinite value, 78-79; in multiply, 99 
input-output files, 165 
input-output tables, 165 
in-stack branches, 112-113 
instruction fetch, 14, 112-113, 121 
instruction flexibility, 7 
instruction formats, 58-59; peripheral 

processor, 143 
instruction issue, 122; restrictions, 124 
instructions: in Central Processor, 13 
irisiruciiuir siack, is; and buffer register, 

120-121; and time penalty, 123 
instruction words, 112-113 
interleaving in Central Storage, 5 
interrupt (Exchange Jump), 114,118,120 
inverter, 21-22 

J 
job processing, sequential stages of, 167 
jump. See Branch Unit 

L 
large computers, 1-4 
linear-select, 54 
logic circuit, 5, 21; and truth tables, 23; 

configuration of, 23; construction, 6; 

design constraints, 28; diagram of, 24, 
25 

logical functions, 60 
logical inversion (NOT), 22 
loading, 25 
look-behind, 123 
loops, 13, 113 

M 
magnetic core storage, 37 
magnetic cores, two-dimensional array of, 

magnetic properties of ferrite core, 39-40 
magnetic tape, 4 
Major Cycle, 16 
memory. See storage references. 
micro instructions, 7 
Minor cycle, 16, 31, 71 
modules, 32-36 
monitor state, 119 
motor-alternator, 35 
MTR (system monitor program): use in 

multiple processors, 18 
multiprocessing, 1; advantages of, 6; 

conditions permitting, 10; theory 

40,41 

PPU’S, 168-169 

nf fi 

multiprogramming, 3, 5, 7-8 
Multiply Unit, 88-101; carry-save net- 

work, 93-97; execution time, 88; ex- 
ponent calculation, 98-99; instruc- 
tions executed in, 88; merge network, 
97-98; methods, 89-92; rounding, 
99-101; sequence of operations, 92-93 

N 
negative zero, 64 
normalize, 71 
normalize network, 75-77 
normalized arithmetic, 89 
normalization in addition, 81; in multi- 

ply, 89, 99 
NOT, 23-24 
NPN transistor, 19-20 

0 
one’s complement, 63 
OR, 23-24 
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organization of 6600, 9-1 
output  file: on disk storage unit, 163 
overflow, 78-79, 81; in multiply, 99 

P 
pack, 71 
packaging, 5-6, 32-36 
paging, 3 
parallel addition, 63-66 
parallel functional units, 9 
parallel shift network, 73-75, 85 
parcels: in instruction word, 121 
partial product, 89-90 
Peripheral and Control Processors: prop- 

peripheral channels, 10-12 
peripheral instructions: jumps, 143-144; 

Central Processor, 148-149; Central 
St orage, 149- 150; direct -indirect -in - 
dex, 146-148; input/output, 150-152; 
no address, 144-146 

erties, 10 

peripheral processors, 5, 7, 10-12 
Peripheral Processor Units (PPU), 7, 9; 

access to Central Storage, 149-150; 
barrel design, 141-142; communica- 
tion with, 11; data flow between, 
150-152; effect of Exchange Jump, 
118; instructions: direct address 

mode, 146; index mode, 147; indi- 
rect address mode, 147; jump, 143 

processing requirements, 141; Read 
pyramid, 154; Write pyramid, 154 

PPU barrel, registers in, 152; register 
operations of, 153 

peripheral subsystem, 10-12, 141-161; 
Dead Start, 154-157; peripheral 
processors, 141-154 

population count, 101, 105 
PNP transistor, 20 
pre-rounding, 101 
primary storage, 45-46 
priority network: Central Storage, 50-51 
priority network. See Stunt Box 
program address register, 13 
protection, 53 
pseudo-carry, 93 
pseudo-sum, 93 

R 
read flag, 130-134 
Read Pyramid: in PPU, 154 
real-time clock, 152, 156 
re-entrant code, 114 
referencing Central Storage. See Stunt 

registers, 59; in Central Processor, 13 
relative address, 50; and ECS, 53, 56 
release signal, 132, 134 
relocation, 53 
reservation control. See Scoreboard 
reservations, 128-130 
Return Jump instruction, 113-114 
right shift network, method of, 84, 85 
rounding, 76; in add, 84; in divide, 105; 

Box 

in multiply, 99-101 

S 
Schwartz, J. T., 3-4 
Scoreboard, 14, 125-134; conflicts re- 

solved by, 125; design, 125; opera- 
tions of, 128-134 

scratch pad, 7 
secondary storage: in storage hierarchy, 

44, 45 
secondary storage unit, 157-159 
segmentation, 3 
serial adder, 64 
shift, 71 
shift apparatus: operation principle, 73 
shift logic. 73-75 
Shift Unit, 71-77; instructions executed 

in, 71-72; number of modules in, 75 
silicon, advantages of, 19 
silicon planar transistor, 19-21 
silicon transistors, 5, 6 
6500 computer, 120 
6600 organization, 9-18; Central Proces- 

sor, 12-15; Central Storage, 15-17; 
Extended Core Storage, 17-18; pe- 
ripheral subsystem, 10-12 

6636 disk, 157-161; characteristics of, 160; 
control sequence for, 160-161 

6638 Magnetic Disk Storage. See sec- 
ondary storage unit 

SKIP command, 124 

slot time-sharing, 142-143, 152-154 
storage address bus, 48, 51 
storage hierarchy, 44-45 
storage module, properties of, 37-38 
storage, operation of, 39 
storage protection, 16-17 
storage references, 43, 44 
storage bus system, 51-53 
Stunt Box, 15,47-51; hopper, 48-49; pri- 

ority network, 50; referencing Cen- 
tral Storage, 52; storage bus system, 
51-53; tag generator, 51 

subtractive adder, 64 
super-word. See sword 
swapping, 17 
switching time, 22, 25-26; Central Stor- 

age, 40 
sword, 54, 115 
synchronous overlap, 47 
synchronous storage, 47 
system library, 171 
system monitor program (MTR): use in 

systems operation, 163-171; circular 1/0 
buffer, 166-167; control points, 
169-171; files, 163-164; job processor, 
167-168; system monitor MTR, 
168-169; tables, 165-166 

PPU’S, 168-169 

T 
tag generator: Central Storage, 51. See 

also Stunt  Box 

test points, 33-34 
time penalty, in Central Storage, 123 
time-sharing, 3 
time slicing, 120 
t h i n g  in Central Storage, 50-51 
timing for example programs, 137-140 
transfer. See Branch unit 
transmission lines, 28-31 
transistor, 19-22, 32; characteristics of, 

21, 22; current, 19; power, 19, 32; 
temperature, 19, 32; voltage, 22 

twisted pair connections, 28-30 

U 
underflow, 78-79, 81-82; in multiply, 99 
Unit and Register Reservation Control. 

unpack, 71 

V 
voltage levels, 22-23 

W 
wire lengths, 6 
wiring: within modules, 28 
Write Distributer, 52 
Write pyramid: in PPU, 154 
word, 115 
Worlton, W. J., 2, 3 

See Scoreboard 



PERIPHERAL AND CONTROL PROCESSOR 
INSTRUCTION EXECUTION TIMES 

r- 
OCTAL 
CODE 

00 

01 
02 
03 
04 
05 
06 
07 

10 
11 
12 
13 
14 
15 
16 
17 

20 
21 
22 
23 
24 

34 

40 
41 

NAME 

Pass 

Long lump to m + (d) 
Return jump to m + (d) 
Unconditional jump d 
Zero jump d 
Nonzero jump d 
Plus jump d 
Minus jump d 

Shift d 
Logical difference d 
Logical product d 
Selective clear d 
Load d 
Load complement d 
Add d 
Subtract d 

Load dm 
Add dm 
Logical product dm 
Logical difference drn 
Pass 
vass 
Exchange jump 
Read program address 

Load (d) 
Add (d) 
Subtract (d) 
Logical difference (d) 
Store (d) 
Replace add (d) 
Replace add one (d) 
Replace subtract one (d) 

Load ((d)) 
Add Kd)) 

TIME 
(MAJOR 
CYCLES) 

1 

2-3 
3-4 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
1 
1 
1 
1 

2 
2 
2 
2 
2 
3 
3 
3 

3 
3 

OCTAL 
CODE 

42 
43 
44 
45 
46 
47 

50 
51 
52 
53 
54 
55 
56 
57 

60 
61 

62 
63 

5n 
65 
66 
67 

70 
71 

72 
73 

74 
75 
76 
77 

(MAJOR 
CYCLES) 

Subtract ((d)) 
Logical difference ((d)) 
Store ((d)) 
Replace add ((d)) 
Replace add one ((d)) 
Replace subtract one ((d)) 

Load (m + (d)) 
Add (m + (d)) 
Subtract (m + (d)) 
Logical difference (rn + (d)) 
Store (m + (d)) 
Replace add (m + (d)) 
Replace add one (m + (d)) 
Replace subtract one (m + (d)) 

Central read from (A) to d 
Central read (d) words 

Central write to (A) from d 
Central write (d) words 

from (A) to m 

to (A) from m 
110-n In m rh-nnnl A nr+i*ir '"'..r . " . . , . I  ".."....-. I "I..._ 

Jump to m if channel d inactive 
Jump to m if channel d full 
Jump to m if channel d empty 

input to A from channel d 
Input (A) words to m 

from channel d 
Output from A on channel d 
Output (A) words from m 

on channel d 
Active channel d 
Disconnect channel d 
Function (A) on channel d 

3 
3 
3 
4 
4 
4 

3-4 
3-4 
3-4 
3-4 
3-4 
4-5 
4-5 
4-5 

min 6 

5 ,word 
min 6 

5 word 

2 
2 
2 

2 
4 plus 
1 word 

2 
4 plus 
1 word 

2 
2 
2 
2 

5 plus 

5 plus 

,, 1 

. .  
Function m on channel d 1 



Beth.Wollar@pearson, 12:12 PM 4/26/02 , RE: permission to copy out of 

Date: Fri, 26 Apr 2002 12:12:54 -0400 
From: Beth.Wollar@pearsoned.com 
Subject: RE: permission to copy out of print book 
To: uban@ubanproductions.com 
X-Mailer: Internet Mail Service, (5.5.2653.14) 

April 26, 2002 

Dear Mr. Uban: 

Thank you f o r  your email regarding DESIGN OF A COMPilTER by James E. 
Thornton. Rights to this title have reveried to the author. Please contart 
him for permissioii Co copy or scan the book. The latest address we have for 
Mr. Thornton is 

Sincerely, 

Beth Wollar, Supervisor 
Rights and Permissions 
Pearson Education 
1900 East Lake Ave. 
Glenview, IL 60025 

Original Message----- --_-- 
From: Tom Uban [mailto:uban@ubanproductions.com] 
Sent: Wednesday, April 24, 2002 1:38 PM 
To: Permissions, Gienview 
Subject: permission to copy out of print book 

Dear Mr. Ravas, 

I am interested in obtaining permission to make copies of the following 
book: 

Title: Design Of A Computer: The Control Data 6600 
Author: J. E. Thornton 
Publisher: Scott Foresman 
Year; 1970 
Library of Congress Catalog Number: 74-96462 

This book is of a technical nature, describing a computer design which 
was produced in the late 1960s. It seems unlikely that it will ever be 
published again, however there exists a small number of enthusiasts w h n  
have an interest in the Control Data 6600 and what Mr. Thornton had to 
write about it. Locating a copy of this book is difficult at best. 

For this reason, I am asking for permission for one (or both) of the 
following: 

1. make a limited number of copies of the book 
2. make an electronic scan of the book available to interested parties 

There is no intent to profit from this request 

Thank you for your time. 

Tom Uban 

Printed for Tom Uban <uban@ubanproductions.com> 1 



2 May 2 0 0 2  

Dear Mrs. Thornton, 

I hope that my letters are not becoming an annoyance. I heard 
back from the permissions department at Prentice Hall, with regarc 
to the rights to copy the book. Here is what they had to say: 

Dear Mr. Ubaii: 

Thank you for your email regarhng DESlGN OF A COMPUTER by James E 
Thornton. liiglits to thls title have reverted to the author. Please contact 
hun for permission to copy or scan the book. Tlie latest address we have for 
Mr. "liornton is 

Sincerely, 

Beth Wollar, Supervisor 
Rights and Permissions 
Pearson Education 
1900 East Lake Ave. 
Glenview, IL 60025 

So, it would seem that I need to ask you for this permission. 
Since there is a small group of people who are currently studying 
the CDC 6600 machine and who would each be interested in locating 
a 'copy of the book, I am requesting permission either to make a 
limited number of copies of the book, or to make an electronic 
scan of the hook availahle t n  thnqp whn ;rye Fntero:t&. 

Please be assured that there is no intent on.my part or the 
part of others to profit from this request. It is solely for the 
purpose of preserving and disseminating the information contained 
therein. 

With best regards, 

Tom Uban 


	cover
	coverInside
	0003
	0004
	0005
	0006
	0007
	001
	002
	004
	006
	008
	010
	012
	014
	016
	018
	020
	022
	024
	026
	028
	030
	032
	034
	036
	038
	040
	042
	044
	046
	048
	050
	052
	054
	056
	058
	060
	062
	064
	066
	068
	070
	072
	074
	076
	078
	080
	082
	084
	086
	088
	090
	092
	094
	096
	098
	100
	102
	104
	106
	108
	110
	112
	114
	116
	118
	120
	122
	124
	126
	128
	130
	132
	134
	136
	138
	140
	142
	144
	146
	148
	150
	152
	154
	156
	158
	160
	162
	164
	166
	168
	170
	172
	174
	176
	178
	180
	_backInside
	_permissionA
	_permissionB

