

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES

36
37

(Times Listed in Minor Cycles)

BRANCH UNIT

INTEGER SUM of XI and Xk to X i
INTEGER DIFFERENCE of Xj and Xk to Xi

3
3

a,
01
02
030
03 1
032
033
034
035
036
037
04
05
06
07

44
45
46
47

STOP
RETURN JUMP to K

GO TO K if XI = zero
GO TO K + BI (Note 1)

GO TO K if XI # zero
GO TO K if XI = positive
GO TO K if XI = negative
GO TO K if XI IS in range
GO TO K if XI is out of range
GO TO K i f XI is definite
GO TO K i f XI is indefinite

GO TO K if Bi # B)
GO TO K if Bi 2 BI
GO TO K if BI <: BI

GO TO K if Bi = BI

FLOATING DIVIDE XJ by Xk to Xi 29
ROUND FLOATING DIVIDE Xi by Xk to Xi 29
PASS -
SUM of 1's in Xk to XI a

Note
2

Note
1 40

41
42

I_

-
14
14
99
9.
9"
9'
9'
9*
9"
94
8'
8*
8 O
8*

FLOATING PRODUCT of XI and Xk to Xi
ROUND FLOATING PRODUCT of XI and Xk to Xi
FLOATING DP PRODUCT of XI and Xk to X i

10
10
10

10 TRANSMIT XI to XI
11
12
13
14
15
16
17

LOGICAL PRODUCT of XI and Xk to Xi
LOGICAL SUM of XI and Xk to X i
LOGICAL DIFFERENCE of Xj and Xk to XI
TRANSMIT Xk COMP to Xi
LOGICAL PRODUCT of XJ and Xk COMP to Xi
LOGICAL SUM of XI and Xk COMP to Xi
LOGICAL DIFFERENCE of XI and Xk COMP to X i

20
21
22
23
24
25
26
27
43

3
3
3
3
3
3
3
3

SHIFT UNIT

SHIFT XI LEFT lk places
SHIFT Xi RIGHT lk places
SHlFT XI NOMINALLY LEFT Bj places
SHIFT XI NOMINALLY RIGHT 81 places
NORMALIZE Xk in Xi and BJ
ROUND AND NORMALIZE Xk in XI and BJ
UNPACK Xk to Xi and BJ
PACK XI from Xk and BJ
FORM Ik MASK in Xi

30
31
32
33
34
35

ADD UNIT

FLOATING SUM of XI and Xk to XI
FLOATING DIFFERENCE of XI and Xk to Xi
FLOATING DP SUM of XI and Xk to XI
FLOATING DP DIFFERENCE of XJ and Xk to Xi
ROUND FLOATING SUM of XJ and Xk to Xi
ROUND FLOATING DIFFERENCE of XI and Xk to Xi 4

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77 -

INCREMENT UNIT*

SUM of A1 and K to Ai
SUM of €3) and K to A i
SUM of XI and K to Ai
SUM of XI and Bk to At
SUM of A1 and Bk to Ai
DIFFERENCE of AI and Bk to Ai
SUM of B1 and Bk to 21
DIFFERENCE of B1 and Bk to 21

SUM of A1 and K to Bi
SUM of B] and K to Bi
SUM of XI and K to Bi
SUM of XI and Bk to Bi
SUM of A1 and Bk to BI
DIFFERENCE of A] and Bk to Bi
SUM of BI and Bk to Bi
DIFFERENCE of BJ and Bk to BI

SUM of A1 and K to Xi
SUM of BJ and K to Xi
SUM of XI and K to XI
SUM of XI and Bk to Xi
SUM of A] and Bk to Xi
DIFFERENCE of At and Bk to XI
SUM of Bj and Bk to XI
DIFFERENCE of BJ and Bk to XI

'Duplexed units-instruction goes to free unit
Octal Code at left of instruction
Cornp-Complement
DP-Double Precision

-
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

The type on the cover and title page of Design of a Conymler-
The Control Data 6600 is a sample of the 6600 display lettering.
The display unit contains two cathode ray tubes and a manual keyboard
Information is displayed in alphabetic and numeric symbols which are
formed on the surface of each tube. The symbols are then traced out
or “painted” on the phosphor of each CRT by the action of its electron
beam. Control of the beam forthis purpose is provided by electrostatic
deflection in two dimensions, horizontal and vertical.
A symbol is painted by electronically converting from the symbol, as it
is stored in the computer, to deflection voltages applied to CRT.
The letters appearing on the coverof this book were photographed
from the display unit.

Library of Congress Catalog Number 74-96462

Copyright 0 1970
by Scott, Foresman and Company,
Glenview, Illinois 60025.
Philippines Copyright 1970
by Scott, Foresman and Company.
All Rights Reserved.
Printed in the United States of America.
Regional offices of Scott, Foresman
and Company are located in Atlanta, Dallas, Glenview, Palo Alto,
Oakland, N.J., and London, England.

FOREWORD

In spite of the large number of computing systems which have been de-
signed and are in use today there is no clear-cut optimum approach to a gen-
eral purpose computing system. Rather, i t would seem, we are just begin-
ning to explore the really basic variations from the one address sequential
machines that launched the digital computing industry.

Early in digital computer history circuit technology advanced so rapidly
that giant strides were made in equipment performance with little variation
in design structure. The very presence of this rapid technological advance
discouraged exploration of system structure. Electrical circuits tend to in-
teract with system organization, and a good system design could become
obsolete in a short period of time because the associated electrical circuits
had been passed by.

In the early 1960’s electrical circuit performance began to stabilize with
the advent of integrated circuit technology. Circuit speed improvement
continued but at a somewhat lower rate. In addtion the integrated circuit
offered the alternative of using larger quantities of mass produced configura-
tions for the same cost as might be obtained by brute force efforts a t speed in
serial processors.

System design then began to diverge into parallel structures. This
book describes one of the early machines attempting to explore parallehsm
in electrical structure without abandoning the serial structure of the com-
puter programs. Yet to be explored are parallel machines with wholly new
programming philosophies in which serial execution of a single program is
abandoned.

A book describing the characteristics of a modern large-scale digital
computer is a challenging undertaking. There is more detail information to
be presented than is possible in a single volume. An overview of the system
without being specific is generally too vague to convey the important char-
acteristics that are of red interest. The author in this book selects special
areas for detail treatment where those areas are unique to the machine de-
scribed. These are interconnected with a general description of the system
as a whole.

The reader can rest assured that the material presented is accurate and
from the best authority as Mr. Thornton was personally responsible for most
of the detailed design of the Control Data model 6600 system.

SEYMOUR R. CRAY
Vice President and General Manager

Chippewa Laboratory

DESIGN OF A
COMP UTtR

T t i t CONTROL DATA

6600

In the editorial series of

MALCOLM C. HARRISON
Courant Institute of Mathematical Sciences
New York University

DESIGN O F A
COMPUTER

THE CONTROL DATA

6600
J. E. THORNTON

Vice Presided

Advanced Design Laboratory
Control Data Corporation

SCOTT. FORESMAN AND COMPANY

TABLE OF CONTENTS

I. INTRODUCTION

A. Justification for Large Computers 1

B. BuildingBlocks 4

C. The Approach 5

11. ORGANIZATION OF THE 6600

A. General 9

B. Peripheral Subsystem 10

C. Central Processor-CPU 12

D. Central Storage 15

E. Extended Core Storage 17

Ill. BASIC CIRCUIT PROPERTIES

A. The Silicon Transistor 19

B. DCTL Logic Circuits 21

C. LogicSymbols 24

D. Transmission Lines 28

E. Packaging 32

IV. CENTRAL STORAGE SYSTEM

A. Storage Module 37

B. Theory of Interleaved Storage 44

C. Stunt Box 47

D. Storage Bus System 51

E. Extended Core Storage 53

F. ECS Coupler and Controller 55

1

9

19

37

V. CENTRAL PROCESSOR FUNCTIONAL UNITS

A.

B.

C.

D.

E.

F.

G.
H.

I.

J .

Boolean Unit 59

Fixed Add Unit 63

DataTrunks 69

Shift Unit 71

Add Unit 77

Multiply Unit 88

Divide Unit 101

Increment Unit 105

Branch Unit 11 1

ECS Coupler-Controller 114

VI. CENTRAL PROCESSOR CONTROL

A. Exchange Jump 117

B. Instruction Fetch 120

C. Instruction Issue 123

D. Scoreboard 125

E. Register Entry/Exit Control 134

F. Summary 137

VII. PERIPHERAL SUBSYSTEM

A. Peripheral Processors 141

B. Dead Start 154

C. Disk Storage 157

VIII. SYSTEMS OPERATION

A. Files 163

B. Tables 165

c. Circular Buffer for 1/0 166

D. Job Processing 167

57

117

141

163

E. System Monitor MTR 168

F. Control Points 169

G . Summary 171

APPENDIX

INDEX

173

177

INTRODUCTION

Reduction to practice is a desirable and necessary test of any theory.
The growing body of theory and understanding about digital computation is
no exception. Particularly evident in recent years are attempts to define
new organization or architecture of digital computers which offer significant
performance improvement. Of interest are theories involving simultaneous
or concurrent computation, sometimes called functional parallelism, sub-
function concurrency, multiprocessing, and so on.

This book is offered as a “case study” of a major digital computer which
has reduced to practice a number of interesting theories involving parallelism
and concurrency.

It is assumed that the reader has been exposed to some introductory
study in digital computation and number theory. No attempt is made in the
book to establish any all-encompassing theory. While this may be dissatis-
fying to some, the author feels this is best left to other comparative studies
and theoretical works.

Following sections of this chapter are included to provide the back-
ground pertinent to the discussion of the 6600 Computer.

A. JUSTIFICATION FOR LARGE COMPUTERS

The motivation for the computer came at least partly from the need to
solve systems of linear and nonlinear simultaneous algebraic equations.

2 INTRODUCTION JUSTIFICATION FOR LARGE COMPUTERS 3

Such systems of equations may occur in the applied fields of physics, statis-
tics, and industrial technology.

Solution of systems of linear algebraic equations is fundamental to the
following efforts.

%lution of vibrational problems.

Electrical circuit analysis and thermal analysis.
Approximate solution of problems of elasticity. . Approximate solution to theories of mechanics and astronomy.

Analysis of elastic structures.

Approximate solution to problems of quantum mechanics.

Particularly for the approximate solutions above, the number of un-
knowns and therefore the number of simultaneous equations increases as the
need for closer approximation increases. It is a rather straightforward exer-
cise to determine how long it would take a man to solve a small system of
equations. One can also determine the time and storage space needed by a
computer. It is easy to see the limitation on a man in terms of attention span
and susceptibility of error. The computer has, however, a somewhat differ-
ent situation.

Assuming the time to completion goes as the cube of the number of
unknowns, one can appreciate that time can be a limit. As more unknowns
are needed to accomplish a more complete solution or a closer approximation,
much more solution time is needed. All computers have a fhite maximum
period of time between failures. If the solution time nears or exceeds this
period, additional precautions must be taken amounting to extra storage and
extra time. Of course, the time taken per solution must also be reasonably
compatible with the time schedule of the person requesting it!

W. J. Worlton, of the Los Alamos Scientific Laboratory, describes it as
follows. “If all problems of interest to science were arranged on a scale of
increasing complexity and those problems marked off that have been or can
be solved with present equipment, it would be obvious that the unsolved
problems are largely in the domain of higher complexity.”l Mr. Worlton
relates complexity to that “of the physical devices being modeled on the com-
puter, the need for more detailed information, the increasing complexity of
the mathematical models, and the growing complexity of computer hardware
and software.”2 One- and two-dimensional neutronics codes and three-
dimensional magneto-hydronamics codes require many more points of solu-
tion, he points out.

Also commenting on this situation, S. Fernbach of the Lawrence Radia-
tion Laboratory says, “These problems (in mathematical physics) are for
the most part describable in non-linear partial differential equations; they
represent primarily the properties of materials under high pressures and tem-

‘W. G . Worlton, “A Look Into the Future,” Nuclear News, April 1968, page 42,
21bid.

peratures as well as the transport of nuclear particles. Because of the com-
plex geometry and multidimensional nature of these problems, the time
consumed on any one run can be many hours, even on the most advanced
computer. Furthermore, many runs may be necessary to optimize the pa-
rameters involved in a design ~ t u d y . ” ~

hh. Worlton further comments, ‘‘Computational physics has matured
to a discipline of equal importance to theoretical and experimental physics,
and the future pace of progress in research depends on using the advantages
of each where appr~priate.”~

A further justification for the large computer is the relative economy of
problem solution on smaller problems. There is a considerable body of evi-
dence to support the advantage of a centralized large computer over many
independent small computers. The evidence takes the form mostly of
economy; that is, the large computer completes more jobs per dollar. A num-
ber of problems or jobs which do not require all the resources of the large
computer may be allowed to share these resources. This multi-programming
is a significant factor in the justification of the large computer. The question
of efficiency in this sharing of resources is important to the ultimate economy.
Here too, the amount of storage and the nature of the storage hierarchy, if
any, plays an important part in the efficiency calculation. A major problem
area is found in simply getting the problem to the computer and the results
back. While the initial history of time-sharing of the computer has been
unrewarding, and occasionally downright ridiculous, the evidence for i t is
too strong. Terminals connected to a large computer will unquestionably
allow work to be done, which otherwise would remain untouched. Resource
sharing by multi-programming is fundamental for both batch processing
and on-line processing a t a terminal. These terminals bring into use a num-
ber of grossly different strategies of computation and storage. Much of the
time sharing controversy of the past few years reflects a lack of understand-
ing about these new strategies. Methods of “paging” and “segmentation”
are suggested. These have to do with schemes of defining and locating blocks
of data. In this regard, Messrs. Harrison and Schwartz of Courant Institute
indicated the following about their time-sharing system, called SHARER,
implemented on the 6600, “The work described . . . leads us to question the
absolute necessity of paging and segmentation hardware in a machine in-
tended for time sharing application. Segmentation undoubtedly allows an
elegant system design . . . with convenient use of reentrant coding techniques.
Paging in theory should allow better use of core memory, though not to the
extent that was originally hoped. Unfortunately, these advantages are often
paid for in processor speed. In some cases, moreover, the potential advan-
tages of paging seem to have been dissipated by the temptation to careless

3s. Fembach, “The Growing Role of Computers in the Nuclear Energy Field,” Lawrence Radia-
tion Laboratory, May 3, 1967, page 5.
Worlton, op. cit., page 43.

4 INTRODUCTION THE APPROACH 5

programming which a hypothetically infinite virtual memory seems to pre-
sent, and by the temptation to under-design coming from architectural
overoptimism.”5 This quote is given here to show that reduction to practice
is a risky business indeed.

There is, of course, a class of problems which is essentially noncomputa-
tional but which\requires a massive and sophisticated storage system. Such
uses as inventory control, production control, and the general category of
information retrieval would qualify. Frankly, these do not need a computer.
There are, however, legitimate justifications for a large computer system as a
“partner” with the computational usage.

One could argue that the economic benefit per problem of the large
computer would disappear as smaller computers are improved. This would
be true if smaller computers could be improved a t a rate faster than the large
computer. It would also be true if the large problems mentioned previously
did not exist. However, neither case holds. Large computers are not a t all
limited in their rate of improvement, and the large untouched problems do
exist. As to the first point, the author hopes that this book will show that the
large computer has conceptual advantage over the small, or a t least enough
to encompass the small.

To sum up the justification for the large computer, the following points
can be made.

Problems are available which are substantially beyond existing computer

Some problems, due to their size, are not attempted a t all.
Processing and storage resources necessary for large problems can be used for

Large centralized computer systems can provide on-line service to terminals

capability.

economical solution of smaller problems.

for a growing class of information systems, not otherwise available.

B. BUILDING BLOCKS

At the beginning of the 6600 project, the major components available
and in use included:

germanium transistors and diodes,
air-cooled plug-in building blocks,

magnetic tape secondary storage.
ferrite magnetic cores,

Although in the early 19606 other components were appearing, the above
were sufficiently known and understood for production and field use.

5M. C. Hamson and J. T. Schwartz, “SHARER, a Time-sharing System for the CDC 6600,’’
Communications of the ACM, X (October 19671, page 664.

Logic circuits were typically constructed in a small number of building
blocks, ranging from a dozen types to three or four dozen. Most electronics
for central storage units were also constructed in building block form. Vary-
ing types of design mechanization were valuable for this type of construction.
Some computer-aided design was in use in which “logic equations” could be
translated into wiring lists, assignment of building block types, parts totals,
and so on. These schemes had four or five years of refinement and were being
“fine-tuned.” During this period, switching speeds of transistor circuits had
rapidly improved. Since the building block approach depended on back
panel wiring to accomplish the “logic,” an interesting problem was appearing.
With increased circuit speed, the conditions in the back panel wiring began
to affect the operation significantly. This took several forms, including
oscillation, noise, crosstalk, limited fan-in and fan-out a t high speed, and
simply the total time for transmission on the Wiring.

Similarly, the central storage units using ferrite magnetic cores were
experiencing significant increases in speed, as well as storage capacity. The
speed increases in central storage were more difficult, however.

In spite of the substantial increases directly available in circuit and
storage speed, the demands of large scale computation far outpaced any
straightforward application of the faster units. I t was apparent to the Con-
trol Data designers that drastic changes in approach were necessary to ad-
vance the large computer art.

C. THE APPROACH

In following chapters of this book, the approach taken in the design of
the 6600 computer will be described in detail. In gross terms the approach
included:

abandoning building blocks in favor of complex, custom modules,
moving from germanium to silicon transistors,
moving from air cooling to freon cooling,
adding parallel processing of functions, - interleaving of central storage units, - separating input-output from the central processor to ten peripheral

adding facilities for multi-programming, and
adding magnetic disk storage to the storage hierarchy.

processors,

PACKAGING

The problems of the building block scheme required packaging more
functions together to reduce back panel wiring. The result of this was a
higher density of logic per unit volume. Within each more complex module

6 INTRODUCTION THE APPROACH 7

the controlled electrical conditions and shorter wire lengths allowed much
faster circuits. The higher density of circuits of course increases the heat
density.

Fortunately, the planar silicon transistor made a timely appearance
offering very high speed and higher acceptable operating temperature than
the germanium equivalent.

The complex module approach to logic circuit construction also in-
creased component density in a way which appeared to preclude air cooling.
Later versions of the 6600 module, however, provided for air cooling in
limited size cabinets. As will be seen in a later chapter, the conductive cool-
ing system chosen provided a very compact high density system with very
tight temperature control. The possibility of a high density compact unit
offered the opportunity of substantially more logic and storage in one main
frame unit.

PARALLEL FUNCTIONS-A THEORY

That there is a “theory” involved in the use of processing functions in
parallel is perhaps a slight exaggeration, hopefully forgiven. A theory of
multiprocessing may, for example, encompass it. What is meant here is the
dimension of parallelism of function in a single job stream.

Special purpose computers utilize a fixed-wired parallelism arising from
the discipline of the specialization. Certain housekeeping operations are
made to operate in parallel with the main operation of the device. Many
such systems perform the housekeeping functions a t arbitrary points in the
sequence of events. There is, in fact, a “main” sequence of o rations and a

any number of other wired-in parallel operations of a secondary nature.
A “general” technique to accomplish the same type of parallel opera-

tion can be had with a relatively small payment in hardware. The essentials
for this scheme are:

“housekeeping” sequence which may be executed in parallel. ? here are also

- independent functional units,
a scratch pad,
instruction flexibility, and
a control system able to schedule these resources.

Functional Units can come in several varieties, including straight-
forward arithmetic, indexing and incrementing facility, and control of stor-
age. Independence of operation of these units means that data may enter
and leave the units rather independently and that the internal operation is
independent. In order to construct a situation similar to the “main” opera-
tion and the “housekeeping” operation mentioned above, these two classes of
function should be represented by separate functional units. For example,
floating point arithmetic units might be applied to a “main” operation, and
fixed point incremental units might be applied to the “housekeeping.”

A Scratch Pad is a convenience for the control system and has a per-
formance advantage over the central storage. Assignment of locations
within the scratch pad can be made consistent with the usage of functional
units. A sufficient number of registers, correctly applied, can provide a con-
siderable overlap of operations, particularly reducing conflict in handling of
intermediate and partial results.

Instruction Flexibility is essential in assigning registers, establishing
conditions of operational overlap of units, and augmenting the natural over-
lap existing in an instruction stream. There are two methods for developing
overlap, First is the use of complex instructions which define overlap condi-
tions completely. Second is the use of “micro” instructions which can be
arranged with flexibility to provide overlap. While the first method is com-
pletely valid, a potentially large number of instruction types are needed.

The Control System for the “micro” instructions is required to main-
tain status of the functional units, the scratch pad, and the data paths avail-
able, and to minimize the time lost in reusing these resources.

Examples of the effect of functional overlap are shown in a later chap-
ter. In the Control Data 6600 Computer, the units, registers, and control
system are designed to emphasize the flow of instructions. If an instruction
calls for a unit which is not busy, the instruction is turned over to the unit
whether the input data is ready or not. The premise behind this approach
is that instructions following are not blocked. A later instruction, for exam-
ple, may not be required to wait.

PERIPHERAL PROCESSING

While the above theory is specifically applied to the central processing
unit, it can also be used in a broader context in the peripheral processing
units of the 6600. These small processors can be assigned relatively inde-
pendent activity either within a single job or in an environment of many jobs.
In this last case, the convenience and advantage of multi-programming is
effectively the overlap of jobs. As each job or task reaches a wait condition,
for whatever reason, a new job can be substituted. This is a rather normal
condition for a large centralized computing system servicing many users.

Attempts to separate peripheral processing from central processing
include the “direct-coupled” systems or the use of a “front-end” machme.
This effectively assigns the peripheral processing to one additional processor.
In the 6600 the addition of ten small processors for this job opens the way to
more complex and flexible system configurations.

MULTI-PROGRAMMING

A system is required, of course, for this multiple usage.
Transfer of jobs from input devices to storage, from storage to processor

and back, and from storage to output devices in the presence of many other

I

8 INTRODUCTION

jobs is a major supervisory achievement. To prevent major obstacles and
overhead in this process, a few rules are essential. Simple message formats,
simple decision alternatives, and straight-forward procedures are a great help
to this operation.

It is also a convenience to relieve the Central Processor Unit (CPU)
from most of the burden of moving data within the storage hierarchy. For
this reason, a convenient early operating system utilized a Peripheral and
Control Processor (PPU) as a supervisor or monitor. In general, however,
the operation of the entire system involves both the management of Input/
Output (I/O) resources and the scheduling and supervision of the central
resources, such as central storage and CPU. If the CPU is idle, for example,
it can be used to obtain its next job, if no 1/0 action is required.

0 RG AN 1 ZAT I0 N
OF THE 6600

A. GENERAL

We have seen in the preceding chapter that a number of factors com-
bine to complicate the design of the very large computer. However, the large
size also gives room for design innovation. The idea of parallel functional
units, for example, could hardly be tried in a small system. In spite of the
complexity of the large system, there is also simplicity because there are
separately defined and implemented functions. A broad description of the
major elements of the Control Data 6600, shown in Figure 1, will be given in
following sections of this chapter.

From this block diagram it should be clear that the connection to all
external equipment is separated from both the central storage and central
processor by the peripheral subsystem. Of major importance to this separa-
tion is the independent operation of the central processor and the peripheral
processors. More detailed description in later sections will show the me-
chanics of this independent operation.

PERIPHERAL SUB-SYSTEM

CENTRAL 12 10 EtJbtK -I PE:AER\\R;L H PROCESSORS PERIPHERAL H STORAGE
CENTRAL

PROCESSOR

FIGURE 1

10 ORGANIZATION OF THE 6600 PERIPHERAL SUBSYSTEM 11

The theory behind such a separation between central processing and
per@heral processing is essentblly that of multiprocessing in general.
Simply stated, it should be possible to accomplish a number of independent
tasks with great efficiency in a set ofprocessors connected to common storage.

a ,

For the theory to hold true, a few conditions are essential.

There must be a number of independent tasks.
The common storage must be able to support the data traffic.
The time interval needed for task initiation must be much shorter than that of
the task itself.

The above conditions tend to permit simultaneous processing of tasks.
In a typical usage of a large computer a single complete job may be

regarded as being made up of a number of tasks. For purposes of illustration,
the following list of tasks could be defined.

1. Initiate control of input device.
2. Transfer input data to input buffer.
3. Establish input file.
4. Perform n computational tasks.
5. Establish output file.
6. Initiate control of output device.
7. Transfer output data to output buffer.
8. Transfer output data to output device.

From this example, the idea of assigning a number of small processors to
the peripheral tasks would appear valuable, particularly if there is a flow of
jobs available to the system.

B. PERIPHERAL SUBSYSTEM

Ten small processors are included in the 6600 Computer, as shown in
Figure 2. They are called Peripheral and Control Processors (PPU).

Each of these ten small processors contains a private storage unit and an
arithmetic and control capability. Each processor has access to the Central
Storage and to the peripheral channels. Some of these properties are listed
below. Each PPU has:

- Storage unit of 4096 12-bit words.
Storage unit cycle time of one microsecond.
An accumulator register of 18-bit length.
A repertoire of sixty-two instructions.
Ability to transfer one word or a block of words to or from central storage.
Ability to transfer one word or a block of words to or from a peripheral
channel.

EXTERNAL
EQUIPMENT

PPO STORAGE

CENTRAL CENTRAL
STORAGE PROCESSOR

PERIPHERAL PROCESSORS

FIGURE 2

Each PPU executes an independent stored program located in its pri-
vate storage unit. These stored programs are loaded by an operator by
means of an operation called DEAD START. Details of this operation are
described in a later chapter.

Each PPU can communicate with any of the other nine in two ways,
central storage or a peripheral channel. For this communication to occur,
each processor involved must “cooperate” by means of its stored program.

Each PPU can communicate with the Central Processor Unit (CPU)
in two ways, central storage and “exchange jump.” For communication to
occur through the medium of Central Storage each processor involved must
“cooperate” by means of its stored program. In this case, one of the stored
programs is in the PPU, and the other stored program for the CPU is located
in Central Storage. The “exchange jump” signal is “one way’’ in that any
PPU may cause the CPU to halt its current program and begin a new one. In
this case, “cooperation” by the CPU is unnecessary since the exchange jump
is a hardware property.

The Peripheral Processors may independently utilize any of the Peri-
pheral Channels. For illustration a printer is shown connected to a Peri-
pheral Channel and, in turn, to a PPU in Figure 3 (page 12).

I t should be noted that no fixed relationship exists between Peripheral
Channels and Peripheral Processors. In this illustration, Figure 3, channel 4
is connected to the printer and PPU 2 is controlling the device. On com-
pletion of the printing operation, PPU 2 may be reassigned to another task
and to another channel. Similarly, several devices may be connected to a
channel. On completion of the printing operation, channel 4 may be assigned
to another device connected to the channel.

In this case a printer, as shown, can be driven from either of two chan-
nels, channel 4 or channel 8. The advantage of this technique is dependent
on the kind of system configuration desired.

CENTRAL PROCESSOR-CPU 13

-
CENTRAL
STORAGE

12 10 - PERIPHERAL - PERIPHERAL -
CHANNELS PROCESSORS

12 ORGANIZATION OF THE 6600

n

INCREMENT

REGISTERS INCREMENT
24

BOOLEAN

PERIPHERAL PERIPHERAL
CHANNELS PROCESSORS

FIGURE 3

C. CENTRAL PROCESSOR-CPU

The Central Processor of the Control Data 6600 Computer is based on
a high degree of functional parallelism. This is provided by the use of many
functional units and a number of essential supporting properties, as shown in
Figure 4.

The ten functional units are independent of each other and may operate

DIVIDE I, /FIXED AD^

SHIFT

BRANCH

CENTRAL PROCESSOR

FIGURE 4

simultaneously. In a typical central processor program a t least two or three
functional units will be in operation simultaneously. The ten units are:

Floating Add
Floating Multiply (2)
Floating Divide - Fixed Add
Increment (2) - Boolean - Shift - Branch

Twenty-four registers are included in the Central Processor. Eight of
these are assigned as operands or data words and are sixty bits in length.
Eight are assigned as index registers and are eighteen bits in length. Eight
are assigned as address registers and are eighteen bits in length. All arith-
metic functions are executed on operands from the registers with results re-
turned to the registers. The selection of the sixty-bit length was made for
efficient instruction packing and for extended floating point precision. The
eighteen-bit registers provide a convenient size for address manipulation.

Instructions in the CPU are three address in general, one register ad-
dress for each of two operands and one result. For example, the equation

A = B + C

contains two operands, B and C, a function +, and a result A.
The use of registers in the Central Processor allows for convenient

handling of partial or intermediate results. Central Storage could, of course,
be used for these values. However, a store operation followed by a fetch op-
eration would be required with a significant time penalty.

Instructions are loaded into the CPU in sequence from Central Storage
under control of a Program Address Register. As the CPU program pro-
ceeds, up to a maximum of seven “old” instruction words are saved. Under
some circumstances, these old instructions can be reused without referencing
memory. An obvious case is shown below.

Location Contents

3 Program Address n
Program Address n + 1
Program Address n + 2
Program Address n + 3
Program Address n + 4

Instruction Word n
Instruction Word n + 1
Instruction Word n + 2
Instruction Word n + 3
Conditional Branch to n

In this example a conditional branch instruction in program address
location n + 4 calls for a “loop” back to location n. Under the correct cir-
cumstances, this entire loop can easily be held within the instruction stack.
The program can loop within the stack itself a t high speed without requiring
any storage references for instructions. There are two advantages to this

14 ORGANIZATION OF THE 6600

case. First, the instruction fetch is much faster. Second, fewer storage con-
flict conditions are possible since fewer actual storage references are made.

Instructions are introduced to the control system in sequence. A simple
test is made in a unit called the SCOREBOARD, after which the instruction
is &ued to the appropriate functional unit or is held until the test can be
passed. The test determines if the functional unit is busy and if the register
assigned for the result is not reserved. Instructions may be issued a t a very
high rate, held back only by the unit busy or register reserved condition.
With a number of functional units and a number of registers available, the
probability of high issue rates is reasonably good even without any optimiza-
tion efforts.

Data transfer occurs between the Central Storage and Central Proces-
sor on a number of separately controlled paths. Five of the 60-bit registers
are assigned as read registers and two as “store” registers. This reflects a
typical unbalance of traffic between read and store. Address registers are
assigned one-for-one with each of these read and store registers. In order for
a storage reference to be initiated for a data transfer, the specified address
register is set to the desired address by a CPU instruction. This new address
is used to reference storage for a read or a store depending on which address
register was set. The data will enter or leave the operand register in a
“partner” relationship with the address register, as shown in Figure 5.

- ADDRESS

PERIPHERAL PERIPHERAL - CHANNELS - PROCESSORS
. DATA *

CENTRAL STORAGE 15

Box ADDRESS f

CENTRAL
PROCESSOR

CENTRAL
STORAGE

CENTRAL
STORAGE

-
DATA

DATA

READ
ADDRESSES

STORE
ADDRESSES

I xo I
OPERAND

REGISTERS
I x2 I 1x3) 60-BIT

18-BIT

A 7

18-BIT

In summary, the CPU contains five essential ingredients for parallel
execution of a single stream of instructions. These are:

- Ten independent functional units,
Twenty-four registers,
A control system with scoreboard, - An instruction stack,
Multiple paths to Central Storage.

D. CENTRAL STORAGE

Any large-scale computer is critically dependent on a powerful central
storage system. In spite of methods which tend to reduce the number of
references to the Central Storage, the remaining references have a dominat-
ing effect on the processing speed and system throughput. The organization
used in the 6600 Central Storage is the result of a sensitive balance of physical
and economic considerations to serve the requirements of the CPU and the
peripheral subsystem.

Design of a high-speed storage unit is affected by the following con-
siderations which may be termed axioms.

1. Storage cycle time tends to increase directly with the size of the storage unit.
2. Storage cost per bit tends to increase inversely with the size of the storage unit.

The design is forced into a storage hierarchy by these conditions, espe-
cially as the need for more storage grows. The 6600 Central Storage was
limited to 131,072 words with a second level in the storage hierarchy supplied
by Extended Core Storage. A substantial economic differential exists be-
tween these two levels.

Shown in Figure 6 is the system interconnection of the Central Storage.
Control of storage references to Central Storage is provided by the STUNT
BOX.

EXTENDED

STORAGE

FIGURE 5 FIGURE 6

16 ORGANIZATION OF THE 6600 EXTENDED CORE STORAGE 17

The Central Storage of 131,072 60-bit words is constructed in 32 inde-
pendent banks. These banks are arranged in an interleaved fashion which
provides a high degree of random access overlap and block transfer speed.

An address of seventeen bits is split as shown in Figure 7. The least
significant five bits of the address are used to define the bank. If the address
is repetitively increased by one, all 32 banks will be referenced before return-
ing to the h t bank. For block transfers, this allows the storage cycle to be
32 times longer than the time required to transfer a single data word. As a
practical matter, other factors tend to establish the relationship of the
storage cycle with transfer cycles.

12 5
I WORD ADDRESS I -1
16 0

FIGURE 7

Two cycles are defined in the computer. The first of these, the MAJOR
CYCLE, is identical with the storage cycle of the PPU storage unit and the
Central Storage unit. The second, the MINOR CYCLE, is a measure of the
time taken to transfer one data word through the storage distribution sys-
tem. A s will be seen in later chapters, most operations are directly related
to the MINOR CYCLE.

MAJOR CYCLE-1000 nanoseconds, or one microsecond.
MINOR CYCLE-100 nanoseconds.

The STUNT BOX is designed to provide a maximum flow of addresses to
the Central Storage. Occasions in which an address is being held because of
a bank-busy condition do not stop other addresses from passing. Imple-
mentation of this unit in the 6600 is especially dependent on the synchronous
and predictable nature of the Central Storage system.

The storage unit making up both the Central Storage system and the
Peripheral Processor “private” storage is a magnetic core, coincident-current
unit. As will be shown, this unit is moduld and pluggable, with the following
properties.

Storage Read and Store Cycle-1000 nanoseconds,
* Word Length-12 bits,

Capacity4096 words,

Central Storage banks require five such units making up a word length of
60 bits and a capacity of 4096 words per bank.

The protection of data or programs held in the Central Storage is ac-
complished by the Central Processor and Peripheral Processors independ-
ently. The Peripheral Processors are instruments of the operating system
and, as such, have access to Central Storage only by assignment. The Cen-
tral Processor is an instrument of the operating system at one time and under

control of a “user” program at other times. In either situation, the Central
Processor is allowed access to an area specified by the operating system.

E. EXTENDED CORE STORAGE

A new element of computer storage hierarchy is the Extended Core
Storage (ECS). It would be an understatement to point out that this ele-
ment is an unknown factor in the performance or economy of a computing
system. This unit was added to the 6600 computing system, well after first
deliveries, in an effort to smooth the storage hierarchy. Studies of actual
practice should place a proper perspective on this unit. In any case, early
usage coupled with simulation studies show it to be an important unit indeed.

The next level of storage hierarchy has been a rotating magnetic device,
such as the magnetic drum or disk. While these are valuable, there is con-
siderable performance difference between them and the Central Storage.
This “gap” is, and will be, a target for inventive offerings. A later chapter
will detail the nature of the various devices contributing to this gap.

A primary goal of the Extended Core Storage is simply the economic
enlargement of Central Storage. While direct random access of the extended
storage is a valid and acceptable use, a particular advantage exists in block
transfers between Central Storage and Extended Core Storage. This ad-
vantage is a by-product of the specific properties of the Extended Core unit.
Some of the more pertinent characteristics are:

Extended Read and Store Cycle-3.2 microseconds,
Storage Word Length-480 bits,
Bank Capacity-125,000 “central” words (60-bit),
Number of Banks-Up to 16,
Interface Trunk Width-60 bits,
Interface Trunk rate-10 “central” words per microsecond

As will be shown in detail in later chapters, this transfer rate is capable
of matching the maximum transfer rate of the Central Storage. As a result,
block transfers between these two storages can proceed at maximum system
rate. This transfer rate is some fifty times the equivalent rate through a
Peripheral Channel.

The diagram in Figure 8 shows the logical organization of the Extended
Core Storage connected to two 6600 Computers. The Central Processor
initiates any transfer, whether it is a single 60-bit word or a block transfer.
Control is given to a unit called the ECS Coupler, which establishes control
over both the Central Storage and the Extended Core Storage for the com-
plete transfer.

Shown in the diagram are four sets of one-half million words, each
under control of a unit called the ECS Controller. This unit allows connec-
tion of four access channels similar to the ECS Coupler connection. It can be

18 ORGANIZATION OF THE 6600

CPU 6600x1 to CENTRAL
PPUS STORAGE

I I COUPLER b----?

-I-
I -

EXTENDED
CORE

STORAGE

CPU 6600#2 10 CENTRAL
PPUS STORAGE

FIGURE 8

seen that this type of organization allows the Extended Core Storage to be
a central “common” storage for a system of multiple processors.

Note that each computer utilizes an ECS Coupler to control its trans-
fers, with the ECS Controller handling the storage unit. For illustration
purposes, a printer is also shown with a “dual channel” controller connected
to a Peripheral Channel from each computer.

Storage protection in Extended Core Storage is accomplished in a
manner similar to Central Storage. Since the Central Processor of each
attached 6600 Computer is the only unit making reference, the protection
mechanism can be located in the CPU. This mechanism is separate from
that providing protection for the Central Storage.

The CPU initiates transfers by defining an initial address in Central
Storage and an initial address in Extended Coke Storage. The length of
block is specified in the CPU instruction; whereas the initial addresses are
defined by address register A0 of the CPU and its “partner” operand reg-
ister. Note that ECS requires an address register of 21 bits in order to define
two million locations. Similar to the Central Storage, a group of storage
banks is interleaved for block transfer performance advantages. This inter-
leaving is limited to four banks, however.

A principal usage of Extended Core Storage involves “swapping” of
programs or data between the Central Storage and ECS. A theoretical
advantage can be claimed for holding segments of programs in the central
storage because of the time penalty, or overhead, of swapping. Therefore,
the very high transfer rate of ECS has a particular advantage, whether
swapping is a primary strategy or not.

BASIC CIRCUIT
PROPERTIES

Ill

Although it is not necessary tc know the intimate engineering details
to study the logic of computers, the knowledge gives additional insight into
the underlying reasons for the design. For it should be remembered that
even the most exquisite piece of logic must be fitted into the physical ground
rules in order to be put to work.

A. THE SILICON TRANSISTOR

There is a striking chronological relationship between the appearance
of the silicon planar transistor and the Control Data 6600. This component
was much sought after for many early years of transistor development.
However, the methods used in those early years did not succeed with silicon.
As a result, early transistor computers used germanium which is perfectly
satisfactory under controlled environment. Upper limits of temperature
during manufacture and during operation are very much lower for germa-
nium than silicon.

When the planar process was invented, the advantages of silicon were
open to use. Of particular importance to computer circuits are the higher
junction temperatures allowable and generally higher current and power
levels allowable.

A second important value resulting from the planar process is the higher
device speed. This can be attributed to the use of the NPN configuration
for the transistor, a configuration that had been difficult to obtain. While

20 BASIC CIRCUIT PROPERTIES DCTL LOGIC CIRCUITS 21

the PNP configuration had been useful, it was inferior in charge storage, thus
limited in high-speed switch usage. [Note: The letters NPN refer to im-
purity characteristics of the collector, base and emitter respectively. “N”

specifies an excess of electrons, thereby implying a negative charge. “P,’

specifies a lack of electrons, thereby implying a positive charge.]
In terms of economics, reliability, and device performance, the silicon

transistor has been a success. The manufacturing yield of the transistor is a
rather sensitive function of surface area of the silicon used. At the very
small sizes problems of mask alignment, handling, and packaging combine
to preclude the use of dice smaller than 10 to 20 mils on a side. [Note: Dice
refers to the final “chip” of silicon into which are diffused the transistor
elements.]

Figure 9 shows the yield as a function of utilized area. As the area
increases past the peak yield, the constants kl and kz for the exponential
portion of the curve depend on the average number of defects per unit area
and the process used to manufacture the device. As a practical matter the
peak attainable yield is a reasonably good fit with a high-speed transistor.

TYPICAL RANGE OF AREA FOR TRANSISTORS
AND INTEGRATED CIRCUITS

YIELD

AREA

FIGURE 9 Relationship between yield and circuit area in integrated ,circuit pro-
duction.

(,
Figure 10 shows the improvement in reliability of transistors during the

ten-year interval 1954 to 1964. According to this curve, the failure rate is
approachng a limit value of 4 x 10-9 failures per hour, or a more familiar
figure of 0.0004 percent per 1000 hours.

This rate of failure is lower than that of the interconnections between
components in a computer circuit. Since the entire 6600 Computer contains
approximately 400,000 transistors, the system mean free time between fail-
ure due t o the transistor is over 2000 hours.

The silicon transistor used is made beginning with an intrinsic-type
wafer of silicon. An epitaxial layer of n material is grown on the surface of

.OR FAILURE RAT E
1954 ‘55 ‘56 ‘57 ‘58 ‘59 ‘60 ‘61 ‘62 163

FIGURE 10 Reliability improvement in transistors over the ten-year period 1954-
1964.

the wafer, and the elements of the transistor are made by using a photo-
graphic masking technique to permit successive diffusions of alternating p
and n material into the epitaxial layer. EPITAXY is a method for obtaining a
constant impurity concentration in a very narrow layer and, in the case of
this transistor, is important to its speed characteristics. (See Figure 11,
page 22.)

B. DCTL LOGIC CIRCUITS

The basic logic circuit used in the 6600 Computer is the Direct-Coupled
Transistor Logic circuit, abbreviated DCTL. This is one of the simplest
switching circuits devised and is heavily dependent on the transistor char-
acteristics for its operation. The basic inverter is shown in Figure 12
(page 22).

22 BASIC CIRCUIT PROPERTIES

Cutoff

Saturation

DCTL LOGIC CIRCUITS 23

V B V C IB Ic Average
+0.2 +1.2 0 0 Switching Time

+0.8 +0.2 1 ma 10 ma 5 nanoseconds

Pp“ P

COLLECTOR’)
FIGURE 11

+ 6 v
t TEST

The selection of the logical representation of the circuit allows for two
possibilities. For example, in the circuit of Figure 13, two truth tables may
be made.

NAND

C - El

FIGURE 13

+
FIGURE 12

The circuit provides a logical inversion (NOT), and the output may be
used to drive several similar circuits. Signal levels, as seen at either an input
or an output point, are either + 0.2 volt or + 1.2 volt. Two symbolic repre-
sentations for this circuit are also shown in the figure. A +1.2 volt signal
a t the input turns on the transistor and drives it into saturation. The condi-
tion of saturation is such that no amount of additional base-emitter current
will cause the collector-emitter voltage drop to go any lower. This is a limit
condition and results in charge storage in the transistor. The approximate
value of the collector-emitter voltage drop is +0.2 volt.

With a +0.2 volt input, the collector voltage rises toward +6 volts,
but is limited to + 1.2 volt by current flowing in the base of load transistors
being driven by the circuit.

The threshold voltage a t the base of the transistor is approximately
+0.7 to +0.8 volt. Below this value virtually no current‘ flows in the tran-
sistor. Above this value, current flows in the base-emitter path and in the
collector-emitter path. Circuit parameters for the cutoff and saturation
conditions are listed below. i

The two tables shown below represent an arbitrary definition of the
signal levels to the logical values “1” and “0.” Table I defines input logical
“1” as +0.2 volt and output logical “1” as + 1.2 volt. Table I1 defines input
logical “1” as + 1.2 volt and output logical “1” as +0.2 volt. In other words,
the logical value inverts between input and output.

Actual Conditions Table I Table I I

A 0.2 1.2 0.2 1.2 1 0 1 0 0 1 0 1
B 0.2 0.2 1.2 1.2 1 1 0 0 0 0 1 1

c 1.2 0.2 0.2 0.2 1 0 0 0 0 1 1 1

Assume that the two logical representations of Figure 13 are assigned
to the two tables, the “circle” to Table I and the “square” to Table 11. I t
should be clear that the result of the circle is C = AB and that the result of
the square is C = A + B.

It should be an interesting exercise for the student of Boolean algebra
to prove this without recourse to the artifice of “inverted” definitions.
Before getting away from this, however, the reader should observe that
measurements taken a t test points will tend to follow nicely this mental
gyration.

Since a computer design is made up of fairly simple combinations of
AND, OR, and NOT, i t is instructive to show two such combinations in Figures
14 and 15. These two cases utilize the definition of logical value “1” as + 0.2
volt for the points labeled A, B, and C.

Note that this remains consistent with the previous artificial definition.
These two figures illustrate another characteristic of the DCTL circuit.
Brief mention was made about driving several “load” circuits. This facility

24 BASIC CIRCUIT PROPERTIES LOGIC SYMBOLS 25

t 6 v + 6 v

C = A B

FIGURE 14

is equally available in either the “circle” or the “square” configuration. It
should be clear then that the value AB is available in Figure 14 and the values
A and B are available in Figure 15.

+ 6 v + 6 v

B

C = A + B

FIGURE 15

C. LOGIC SYMBOLS

The logical representations used in the preceding figures are based on
a very simple relationship with the electrical co ponents used. r“

Symbol Logical Function Electrical Component

+ Inversion Transistor (Including Its

0 Usually AND Combination Collector Load Resistor
0 Usually OR Combination Collector Load Resistor

Base Resistor)

The apparent advantage to the designer of knowing from the logic
diagram an exact count of electrical components is specific to this type of

Figure 16 shows the representation of the exclusive OR function
using the symbols described above. In later chapters it will be seen that the
“intermediate” values available in the combination of Figure 16, specifically
the outputs of the “circles,” can be powerful uses of the DCTL circuits.

logic.

A e t a B

2

FIGURE 16

At this point, it is convenient to describe some of the ground rules of
use of the DCTL circuits, as defined in the 6600 Computer. One circuit
which may be a common collector connection of several transistors can drive
several other transistors, either on the same module or on a separate module.

A circuit may drive up to five transistors when all transistors, including
driver, are physically on the same module. This loading limitation is found
experimentally from variations in base threshold voltage and corresponding
base current demand in the load transistors. It is also affected by the im-
pedance level of the etched copper printed circuit interconnection within the
module. For each load configuration the driver collector resistor RL and
base resistors Rb of the driven transistors are adjusted to limit and balance
the base currents.

Other load limits apply when the circuit load is on a separate module,
requiring back panel wiring. A circuit can simultaneously drive up to two
transistors on a separate module. Loading in this case accounts for the loss
on the transmission line connecting the two modules as well as variations in
base threshold voltage.

An additional limit of six collectors connected together for OR and AND
functions completes the very simple list of constraints. This limit is required
for speed reasons only and represents the maximum capacitance acceptable
a t a collector point. The time constant “t” may be calculated for this point
from the capacitance per collector and the collector load resistor RL. Using
the highest value of RL of 680 ohms and 2 micro-micro-farads for each col-
lector, the time constant for six collectors is 8.16 nanoseconds.

The exponential charging of the collectors toward the power buss (+ 6
volt) is held at the value +1.2 volt by load currents. Therefore, a small

26 BASIC CIRCUIT PROPERTIES LOGIC SYMBOLS 27

FIGURE 17

fraction of the 8.16 nanoseconds is consumed for the “turn-off ” case, as shown
in Figure 17. In fact, the rise time due to capacitance is shorter than the
transistor turn-off characteristic. One can easily see that a faster transistor
would require changes in this rather comfortable balance in order to be
effective.

The circuit of a flip-flop and its clear/set input are shown in Figure 18.
This basic flip-flop may have up to five set inputs and five clear inputs; in
this example only one of each is shown. The set input is fed from a three-way
AND gate, of which one input comes from the clear/set network.

FIGURE 18 Basic flip-flop with clear/set input.

The clear/set network enables the flip-flop to be cleared and reset by
the same gating pulse. In most cases this will be a twenty-five nanosecond
clock pulse. Figure 19 shows a logical representation of this circuit and a
timing diagram for the clear/set operation.

The previous definitions of logical “1” are required. All input and
output connections as shown in Figure 19 define a “1” as +0.2 volt.

A useful symbolic treatment is shown in this figure with the letters
“A” through “E” labeling the circles and squares, as shown. For clarity
these are shown also in Figure 18. The timing chart assumes an inverter
delay of five nanoseconds in all cases.

One important characteristic of this circuit is that the set output is

+ 0 . z v “1 ” .
SET OUTPUT

CLEAR OUTPUT

PULSE
+0.2v “1“

(INVERTER DELAY ASSUMED 5 NANOSECONDS)

0 10 40 50 20 NSEC 30
1 1 1 1 1 1 1 1 1 1 1

CLEAR/SET PULSE

A I
B I

INITIALLY SET
- -
\ / 4 -“OD’ - GOING SPIKE D

INITIALLY CLEAR

E I
FIGURE 19 Flip-flop logical representation and timing chart.

28 BASIC CIRCUIT PROPERTIES TRANSMISSION LINES 29

available immediately after the inverter delays represented by “C” and “D.”
However, the clear output is not available until after the inverter delays
following the trailing edge of the clear/set input signal.

The spike shown for the case of the flip-flop initially set is nominally five
nanoseconds wide, representing the difference in the path A-E-D and
A-B-C-D.

A summary of design constraints is:

- a collector can drive five bases in a module, - a collector can drive two local bases in a module and two bases by back-panel

six collectors can be connected within a module.
twisted pair on one other module,

D. TRANSMISSION LINES

For back-panel interconnections and for chassis-to-chassis intercon-
nections, two kinds of circuits are used. At the high frequencies used, these
interconnections must be treated as transmission lines and protected from
anomalous behavior.

Within one chassis it is convenient to interconnect using a “DC” form
of circuit since the DCTL logic within the module can then be easily treated
between modules. Distances of the wiring within a module are two to three
inches maximum with transmission velocities of about 0.1 nanosecond per
inch. Distances external to the module but within a single chassis can range
up t o about five feet, with transmission time of about 1.3 nanosecond per foot.
Since the circuit speed is in the range from three to five nanoseconds, this
distance must obviously affect the design.

The twisted pair driver is shown in Figure 20. Initially, consider Q1
conducting so that its collector is a t +0.2 volt. With Q2 turned off, the

+6v

FORWARD WAVE REFLECTED WAVE

9v+ 2v.I l v

- 20 LINE =15OCl =
LINE DELAY=I 3 NSECIFT 2q - IN

_ _ c -

+6V FORWARD WAVE REFLECTED WAVE t,,
6.7MA

r\

X

- 20 LINE =15OCl =
LINE DELAY4.3 NSECIFT izA -

IN

4 T=8vfCRl - \

MODULE *
FIGURE 20 Twisted pair driver.

transmission is terminated as an open circuit. Since this line will not go
anywhere else, the open termination is allowed, and a termination for the
reflected signal is needed at the sending end.

A +0.2 volt input causes the collector of Q1 to rise toward +6 volts.
Current splits between the resistor-diode leg and the twisted pair line, with
6.7 milliamperes out of the total of 10 ma being sent into the line. This value
of current is found from the resistance values, the forward characteristics of
the diode, and the surge impedance of the transmission line. This last value
is in the range of 130 ohms to 150 ohms.

A wavefront of voltage and current is sent down the twisted-pair trans-
mission line, with the incremental voltage adding to the rest state of the line
of +0.2 volt. At the base of Q2, the voltage of this wavefront exceeds the
threshold of the base, causing base-emitter current to flow and turning on
Q2. This current does not represent a perfect termination for the line; there-
fore, a reflected wave of voltage and current is sent back through the twisted-
pair transmission line. When this reflected wave front reaches the sending
end, the resistor-diode network appears as a perfect termination. Therefore,
no further reflections are introduced, and the line is stable at + 1.1 volt.

In the reverse case in which Q1 is turned on, a similar wave is sent down
the line and is, in turn, reflected. The reflected wave returns to the sending
end to iind the least resistance path to be the collector-emitter path of Q1.
The resistor in series with the line then serves to correct the network to a
perfect termination.

The shunt diode and resistor are replaced by a transistor and its base
resistor when it is necessary to drive a circuit on the same module. The cir-
cuit operates in the same manner since the base-emitter circuit of the tran-
sistor acts as a diode.

The symbols used for the twisted pair driver and receiver are squares
and circles as in the rest of the logic, with a small circle signifying the module
connection.

Interconnection between major physical entities, such as chassis or
cabinets, is accomplished by pulsed transmission over coaxial cables. Prin-
cipal reasons for this are related to self-induced electrical noise and protec-
tion against external electro-magnetic noise. The coaxial transmission cir-
cuit is shown in Figure 21.

Initially, Q1 and Q2 are turned off so that no current flows in the pri-
mary winding of the transformer. When Q1 is turned on, a current flows
from the + 6 volt supply through one half of the primary winding; a current
also flows in the secondary winding by transformer action. The transformer
is designed for a 25-nanosecond pulse. Therefore, the input signal to Ql
must be limited to that length of time. This signal is transmitted down the
coaxial cable as a wavefront of voltage and current much the same as the
twisted pair case. However, the receiving circuit includes a terminating
shunt resistor, which prevents any reflecting waves.

30 BASIC CIRCUIT PROPERTIES TRANSMISSION LINES 3 1

t 6v
---t-t--

FORWARD WAVE REFLECTED WAVE
138v .28v

4MA

I N * Z, L I N E = 7 3 f i
LINE DELAY =1.5 NSEC/FT

CHASSIS X CHASSIS Y
MODULE A

x7 irf---- --m
FIGURE 21 Coaxial cable driver.

When Q1 is turned off, the positive-going voltage signal is coupled
through the capacitor C1 to the base of Q2, turning i t on. Collector-emitter
current flowing in Q2 also flows in the second half of the primary winding of
the transformer, in an equal but opposite polarity to the first 25 nanosecond
pulse. The values of C1 and R are so chosen as to hold Q2 on for 25 nano-
seconds, producing a complete cycle of positive and negative signal through
the transformer. This second negative polarity pulse produces no effect on

FIGURE 23

FIGURE 22

the receiving transistor. However, it effectively equalizes the magnetic state
of the transformer, removing any “burst” effects.

Only when a “1” is to be transmitted is a pulse sent through the coaxial
cable. A new signal can be transmitted every 100 nanoseconds, previously
defined as a MINOR CYCLE. Time of propagation in the coaxial cable is 1.5
nanoseconds per foot. Cables used from chassis to chassis are standardized

32 BASIC CIRCUIT PROPERTIES PACKAGING 33

a t 10 feet, resulting in a time interval of very close to 25 nanoseconds from the
beginning of the input signal to Q1 and the beginning of the output signal
from Q3.

All uses of this coaxial transmission within the 6600 Computer involve
a synchronous pulse derived directly from the computer’s clock oscillator.
I t is of special interest that the clock itself is also transmitted throughout
the system using the coaxial transmission.

E. PACKAGING
From the time that the transistor became available for computer de-

sign, packaging methods have become increasingly important. A particu-
larly difficult set of problems centers around the power distribution and cool-
ing methods. As more and more components are crowded together in large
computer systems, it has been necessary to examine alternatives to the tra-
ditional air cooling. Similarly, the ability to pack components greatly ex-
ceeds the ability to reduce the power expended per logical decision. This can
be described as in the chart shown in Figure 24.

5
POWER

LOGICAL LOGIC
DECISIONS

CUBIC FOOT
(THOUSANDS)

LOGICAL
DECISION
(WATTS)

PER 3

1 .05

FIGURE 25

i955

FIGURE 24
1960 1965

The curve of logical decisions per cubic foot ignores space in which no
power is being dissipated. What this chart shows is that the packing den-
sity increases are causing a net increase in power dissipated per cubic foot,
despite the drop in power per logical decision. A word of caution here. This
condition exists in the large-scale class of computers, where high-packing
density is necessary for achieving increased speeds. For smaller systems this
would not be necessary. However, the trends in use of integrated circuits in
new designs would appear to be following a similar set of curves.

Circuits in the 6600 Computer are packaged in modules as shown in
Figure 25. Two printed circuit boards are mounted side by side with com-
ponents mounted in between in a “cordwood” fashion. Transistors in metal
cans are mounted on the inside surface of each board; the collector, base, and
emitter leads are inserted through holes and soldered on the outer surface to
the printed circuit wiring. Resistors are mounted’from board to board
through holes and soldered also on the outer surface.

A 30-pin connector fastened on one edge of this assembly allows the
module to be plugged into the back panel. The module connector mates
with a chassis, or back-panel, connector. At the opposite edge of the module
assembly is mounted a cover plate containing captive screws. This plate

PACKAGING 35

Operator console with keyboard and display.

connects the module to the chassis mechanically and also f ms part of the

number for the module and up to six test point terminals. These test points
are connected to the circuits a t points considered most desirable by the
designer.

Modules are mounted in a vertical chassis in separate compartments.
Compartment side walls, the connector to the back panel, and the module
cover plate have a black finish to aid thermal radiation. Horizontal rows of
modules are separated and supported by metal bars, similar to shelves. A
copper tube is imbedded in each bar and is connected to a Freon refrigeration

path for conducting heat from the module. The plate carri E an identifying

system. Component heat from each module is carried by conduction
through the printed circuit board, module plate, compartment walls, and
cold bars. The cold bars are held at a minimum temperature of 60°F. Some
control of room humidity is necessary at this temperature in order to prevent
dew point condensation.

Central storage modules are similarly pluggable and will be described in
a later chapter.

A chassis is capable of holding 756 logic modules. Power from a supply
of +6 volts is distributed by a bus bar "ladder" integrated into the chassis
structure. Each module has a single lead connecting both ground and the
supply voltage. The DC voltage is obtained on the chassis by means of dis-
tributed transformer, choke, capacitor, and rectifier elements. Power is

i-"-

REFRIGERATION 1 UNIT

1 1 2. CPU-DIVIDE 1
I / I 3. 16K STORE

7--------- I I
L- - - - - -

DEAD J
START
PANEL

FIGURE 26 Cabinet top view.

36 BASIC CIRCUIT PROPERTIES

brought into each chassis through a three-phase, 400-cycle cable from the
system motor-alternator. This technique effectively “encloses” the chassis
from the point of view of power and ground. The method assumes a rela-
tively well regulated load, a condition which is particularly straightforward
with the DCTL circuit.

Chassis are mounted in four cabinet bays, as shown in the top view dia-
gram of Figure 26. The chassis are hinged to swing out as shown in one of the
bays. In effect, the chassis are located as if in a cylindrical configuration.
The particular value of this method is the minimum cable distances between
chassis. All cables are cut to a standard length of ten feet, which includes
about four feet within the chassis back-panel area.

CENTRAL STORAGE
SYSTEM

IV

Increasingly in large-scale computer systems, the central storage sys-
tem, or “memory,” is the dominating influence on cost and on performance.
For fifteen years the ferrite magnetic core has been the basic component
used. Other alternatives include magnetic thin film, plated wire and, in early
computing days, the Williams tube which was a form of capacitive storage.

Magnetic core storage has ranged from twenty microseconds for a com-
plete read and store operation, using a physically large core, to progressively
faster cycles with smaller cores. Techniques for interconnecting these mag-
netic cores have utilized the coincidence of two or more magnetic fields, usu-
ally referred to as coincident current or 3-D. Linear-select methods which
do not utilize magnetic coincidence, except for storing, are referred to as 2-D.
An interesting intermediate technique is a linear-select method referred to as
23-D. In general, 3-D is preferred for the smallest storages; 2-D is preferred
for the largest storages; 24-D is found in a narrow intermediate range.

It is a tribute to the magnetic core that many computer people refer to
the Central “Core” as synonymous with Central Storage, reflecting the fact
that the ferrite core is the component most used for Central Storage.

A. STORAGE MODULE

Within the 6600, Central Storage and each Peripheral Processor use a
coincident-current storage module with the following properties.

38 CENTRAL STORAGE SYSTEM

12-bit word length. - 4096, 12-bit words.
Read-write cycle of 1000 nanoseconds.

Since Central Storage requires 60-bit words, storage modules are con-
nected as one bank. The module is physically constructed as shown in
Figure 27.

The module is an assembly of seven subassemblies, one of which is a
three-dimensional matrix of ferrite magnetic cores. The other six are collec-
tions of electronic components which “drive” the unit. The entire assembly
is built with a connector plate for mounting in the chassis and a cover plate
similar to the logic module. In the case of Central Storage, five modules are
mounted in a horizontal row of a chassis, taking up the space of two rows of

STORAGE MODULE 39

FIGURE 27

FIGURE 28

logic modules. A single row of logic modules is needed to control this Central
Storage bank. Four banks are mounted in each Central Storage chassis, as
seen in Figure 28.

Operation of this storage is dependent on a “square-loop” magnetic
property of the ferrite magnetic core. A typical representation of this prop-
erty is shown in Figure 29 (page 40). The point labeled Hc is a measure of
the coercivity of the material. A field applied in the H direction causes the
magnetic flux density B to change following the shape of this curve. As the
field is increased, a point called the saturation point of the material is reached
and labeled on the curve Bs. At this point, no amount of additional field will
cause any change in the remanent magnetic state BR following removal of
the field.

It is particularly important to a coincident current 3-D storage that the
squareness be nearly ideal. For example, the area labeled KNEE is particu-
larly sensitive, as will be seen. This property, squareness, is sensitive to tem-
perature and mechanical stress. Therefore, a physically protected and ther-
mally controlled environment is necessary.

The coincident-current method is based on the coincidence of two fields
within a core for a READ or a WRITE operation. These fields are supplied by

40 CENTRAL STORAGE SYSTEM STORAGE MODULE 41

B
I

FIELD

FIGURE 29 Hysteresis loop.

--H

currents flowing in two orthogonal wires passing through the toroidally
shaped core. Depending on the direction of the current in these two wires, a
positive or a negative field will appear a t the core. It can be seen that a “half-
current” will produce a “half-field’’ which can be held just below the KNEE of
the B-H curve. Two positive half-currents will produce a full-field which will
be substantially above the coercivity of the material as shown in the figure.
This example also shows the resulting remanent magnetization following
removal of a half-field and a full-field.

It should be clear that two orthogonal wires can be made to select one
core from a two-dimensional array. In such a case only one core at the co-
incidence of the X line and the Y line will experience a full-field. All other
cores on the X and Y lines will experience a half-field, while the rest of the
cores wi l l remain unaffected by any field.

During a full-field condition the magnetic core will switch states, taking
a finite time interval to accomplish the switch. This time interval is 400
nanoseconds in the storage module for the 6600 Computer and is a function of
the composition of the ferrite and the dimensions of the core.

A two-dimensional array of cores is shown in Figure 30. The two or-
thogonal wira X and Y can be seen along with three other wires passing
through each core. A diagonal wire is a convenient means for sensing the
voltage induced during a core switching operation and is labeled the SENSE,
or S wire. The other orthogonal wires are included as a convenient means for
counteracting the fields induced by the X and Y Ges. These are labeled
INHI BIT, or I wires, and effectively allow the array to grow from two dimen-
sions to three. Figure 31 (page 42) diagrams the method used.

In this diagram one X drive line and one Y drive line are shown. A
separate inhibit line is used for each bit or layer in the third dimension,
while the X and Y lines thread through the whole array as shown. Each
“plane” is a two-dimensional array of 4096 bits. There is a total of twelve
planes in a module, making up the twelve bits of word length. Bit control is
accomplished through the X inhibit and Y inhibit wires on each plane.

A typical readout is accomplished by pulsing the X and Y lines with
half currents in a direction such as to produce a “positive” full-field in each of
the twelve cores corresponding to the selected address. One can easily pre-
dict the switching behavior of a core at a selected address for the two cases of
interest. With a “1” previously stored in the core, a negative remanent state
-BR exists before the readout. The full readout field causes the core to fol-
low the B-H curve to the right and upward, finally coming to rest a t +BR.
The total magnetic flux change is represented by the excursion from -BR
to +BR, resulting in a “one” signal readout on the SENSE winding. If this
signal is sampled and stored, the WRITE cycle of the storage unit can be used
to replace the “1” in the core. A WRITE cycle follows the READ cycle by

LI
E

I

LL
II
3
> H

FIGURE 30

42 CENTRAL STORAGE SYSTEM

FOR I

I
I
I
I
I
I
I
I

1

B
I

READOUT

H

1,

STORAGE MODULE 43

I
I

-BR

- - 32 TRANSFORMERS- rm
HORIZONTAL

DRIVE
TRANSFORMERS

FIGURE 31 Drive line connections.

Fl$LD FlzLD -

causing the X and Y lines to produce a "negative" full-field in each of the
twelve planes, again at the selected address. The result obviously is to re-
store the cores to their original magnetic remanent state.

The second case of interest is found with the initial magnetic remanent
s ta te a t + B R representing a stored "zero." The positive full-field during the
READ cycle causes very little actual flux change, resulting in a very small
signal. During the following WRITE cycle, the INHIBIT windings are ener-
gized by a positive half-field counteracting the effect of the full negative X-Y
drive. This is shown in the diagram of Figure 32.

This operation is shown in Figure 33 in the form of signal waveforms for
drive and inhibit currents. The type of storage just described is known as
"destructive readout" or DRO sto age because a single READ requires a fol-
lowing RESTORE to retain the da s a.

'pz,"b' (STORE "ZERO" ONLY1

PATH
STORE

r \ I
WRITE DRIVE

40011s * - 405ns 90ns 425ns -

STORE
FIELDS

I

NET FIELD (STORE "ZERO")

NET FIELD (STORE "ONE")

FIGURE 32 Read and store.

All storage modules in the Central Storage and in the Peripheral Proc-
essors utilize an identical cycle. This cycle is controlled by a sequence con-
trol for each Central Storage bank and by the Peripheral Timing Control
to be described in a later chapter. Two types of Storage References can be
made, a READ/RESTORE and a CLEAR/STORE with a special EXCHANGE

-

650s

44 CENTRAL STORAGE SYSTEM THEORY OF INTERLEAVED STORAGE 45

reference to be described later. In any case, a full 1000 nanoseconds are
always used for any reference.

The storage module block diagram of Figure 34 shows the logic needed.
From this block diagram it can be seen that data can be read out and new
data stored in a given address in one cycle. In the case of Central Storage,
five Storage Modules are used with a single address and with a 60-bit Z reg-
ister and 60 sense amplifiers.

I
I
I

I I

X DRIVE CIRCUITS
ADDRESS ADDRESS

BUS REGISTER

ACCEPT

INHIBIT MAGNETICS
BUS 12-BIT CIRCUITS

I
I I I

Y DRIVE CIRCUITS I SENSE
AMPLIFIERS

FIGURE 34

B. THEORY OF INTERLEAVED STORAGE

It has not been possible to construct an economically reasonable single-
level central storage. There is also a limit on size versus performance, aris-
ing from the proportion of time spent getting to and from storage as against
the time of a storage reference within the unit itself.

Both cost and performance combine to force a system of primary and
secondary storage; in other words, a hierarchy.

In the following discussion of an optimum solution to the storage system
organization, it is well to remember that the solution must hold for the whole
system. A denial of the existence of the hierarchy can be countered by the
realization that small central storage can be very fast, but large cannot. Ob-
viously, either the central storage will be too small at one extreme or too slow
a t the other.

TRANSFER BETWEEN LEVELS

With a beginning assumption of only two levels of storage hierarchy, a
first consideration is the transfer b&ween the two levels. Unquestionably

the two levels will have different properties with the advantage going to per-
formance (speed) at the higher level and with the advantage going to cost a t
the lower level. I t should be clear that this will produce a secondary level
module much larger than the primary level.

Assuming the secondary storage is a rotating device such as a magnetic
drum or disk, there are other differences in properties between levels. The
secondary storage will have three types of timing considerations related to
the transfer of data between levels. These are listed here.

1. Positioning time-this refers to any mechanical action to place the recording or

2. Latency time-assuming a rotating mechanism, this refers to a portion of one

3. Transfer rate-this refers to the rate of transferring data to or from the storage

reading head on the desired track.

rotation to reach the desired angular position on the track.

unit.

As positioning and latency time get very large, a number of strategies
Such strategies can must be employed to prevent major inefficiencies.

include:

1. a number of independent secondary storages to overlap positioning times;
2. queuing methods to take advantage of transferring between levels on the basis

3. insertion of an intermediate level of storage to smooth the secondary storage

4. adoption of a time-shared usage of the central processor in the hope of provid-

of whatever is “closest”;

traffic;

ing job overlap.

The optimum choice of strategy is extremely dependent on the type of
job or jobs being executed and the size of the transfers between levels. It
should be apparent that as the secondary references become more random as
to position, the first strategy above of independent secondary storages be-
comes more necessary.

The transfer rate of data flowing between levels should be balanced with
the type of secondary storage used. However, as the queuing strategy or
time-shared technique improves, the transfer rate becomes quite important.
See Chapter VII for Disk Storage Unit.

PRIMARY STORAGE

At the top of the storage hierarchy the question of the optimization is
very complex. This storage must provide peak performance with the proc-
essor; it must provide for the transfer to and from the secondary storage with
minimum loss to the processing job; it must provide for the data transfers to
and from the external devices.

Looking a t the processor performance first, a major limitation is the
time taken in the transfer of each operand or result between the processor

46 CENTRAL STORAGE SYSTEM STUNTBOX 47

and the primary storage. Assuming the processor can be infinitely fast,
each storage reference required in the process can cost a storage cycle time.

It is obvious that one should attempt to reduce the number of actual
references to storage. Some possible strategies would be:

1. take more data per reference in the hope that more than one element of data
can be used;

2. utilize a small scratch pad memory for intermediate or partial results of compu-
tation which need not transfer between the processor and storage;

3. remove extraneous references to storage for the housekeeping associated with
the processor program, either by microprograms with the scratch pad or by spe-
cial instruction hardware.

The necessary references to storage from the processor may be aided by
other strategies.

Split primary storage into independent units, each servicing a separate
processor.
Split primary storage and provide overlap conditions to hide portions of the
storage cycle.
Interleave many banks of primary storage in order to increase the speed of
“burst” transfers between the processor and storage, and between levels of
storage.

For random referencing of primary storage and with the ability to ac-
complish an overlap, the more independent banks of storage the better. Of
course, as the number of banks increases, the processor speed can decrease
due to increased line length and increased distribution and switching logic.

For burst transfers between the processor and storage a reasonable
assumption can be made that the transfer is made on a series of consecutive
addresses. In that case, many banks of storage with the ordering of consecu-
tive addresses assigned to consecutive banks is a possibility, such as:

Word Address - Bank

-
6713
6714
6715
-

-
3
4
5
-

This sort of interleaving is not incompatible with random referencing
requirements since all that is needed then is many banks without special
regard to addressing order.,

SYNCHRONISM

In a primary storage system two methods may be employed to connect
each storage unit, namely, synchronous connection and asynchronous con-
nection. The synchronous connection provides a clock line between all units
and specifies a fixed time interval for control and data transfer events. The
asynchronous connection requires no clock line and does not specify a time
interval.

The advantage of the asynchronous connection falls in the category of
modularity, or simple expansion, without regard to distance or other time
variables.

If no attempt is made to overlap storage operations, or if overlap is
limited to Read and Store overlap, then the asynchronous technique has the
flexibility advantage. However, as any attempt is made to increase the
overlap, the timing uncertainty of the asynchronous connection is an
obstacle.

SYNCHRONOUS OVERLAP

The following describes a method of connecting a number of banks of
storage in an interleaved synchronous manner to achieve a high burst rate
and a high degree of random overlap. Assume these properties:

1. a Read-Store reference takes one MAJOR CYCLE;
2. the storage bus can transfer one word in one MINOR CYCLE;
3. storage accessing agent can deliver a new address every minor cycle;
4. after the address is delivered, a data word will be transferred after a fixed num-

ber of minor cycles.

The storage system can now take advantage of the predictable nature
of the synchronous connection. Many storage references can be made a t
minor cycle intervals with the resultant data transfer a t fixed following inter-
vals. Conflict in the use of a storage unit can be detected in a predictable
manner in advance of actual data transfer. The strategy to be employed in
the presence of a conflict may vary with the kind of reference.

This method of overlap is entirely legitimate for random references and
for mixing several referencing units. It is also very powerful for burst trans-
fers where a single control instruction can set up a stream of data with data
words transferring a t minor cycle intervals.

C. STUNT BOX

Based on a synchronous interleaved storage system as described above,
the 6600 Computer makes use of its high degree of overlap. The mechanism

48 CENTRAL STORAGE SYSTEM STUNTBOX 49

GENERATOR
INPUT

- M O t F L
t ADDRESS .

BUS F

I PRIORITY 1 , t: c4c’75
I I 1 1 I

t ACCEPT
BUS

FIGURE 35

for referencing control storage is called the STUNT BOX. This unit is shown
in block diagram form in Figure 35.

The STUNT BOX contains three main parts:

hopper, - priority network,
* tag generator and distributor.

The hopper is an assembly of registers used to retain storage reference
information until any storage conflicts are resolved. In principle this allows
a new storage address to be delivered every minor cycle with any “rejected”
addresses to be reissued repeatedly until accepted.

Assuming an empty hopper, a storage address is entered in register M1
from one of the sources, the Central Processor or Peripheral Processors. This
entry is made under control of the priority network, with the time of entry
a t tOO. As described in a previous chapter, this time is the leading edge of a
25-nanosecond clock pulse and is repeated every minor cycle, or 100 nano-

L

seconds. At the time of this entry a set of tags is also entered, which fully
identify the nature of that particular storage reference. The storage address
is sent immediately to the storage units on the storage address bus, a t clock
time t25.

The hopper is designed to allow the information entered in register M1
to circulate through the other registers and return to M1. A 75-nanosecond
time interval exists between each register which results in a total recircula-
tion time of 300 nanoseconds. For example:

tOO -Enter M1
t25 -Address to Storage Address Bus
t75 - M 1 to M4
t150-M4 to M3
t225-M3 to M 2
t300-M2 to M 1 (if not accepted)

In each storage bank the lower five bits of the address are examined for
a match. If the bank whose number matches is not busy, an ACCEPT signal
is returned on the ACCEPT Bus to the Stunt Box. This indicates that no
conflict exists, and the storage cycle has been initiated in the bank. The
ACCEPT signal reaches the Stunt Box in time to disable the path from M2 to
M 1 and to remove that entry from the priority network. As a result, a new
address may be entered. If, however, the selected storage bank was busy, no
ACCEPT signal would be sent. In that case, the priority network gives top
priority to the recirculation path, thereby causing new addresses to be held
up for one minor cycle. It should be obvious that the hopper can hold three
addresses recirculating, effectively blocking any new addresses. As each re-
circulating address is accepted, a new address can be entered.

This method of handling storage accesses has the considerable value of
preventing unnecessary bottlenecks. One source of addresses will not block
another source except as each may call for the same storage bank. Knowing
the recirculation time of 300 nanoseconds and the storage cycle time of 1000
nanoseconds, an interesting case is a series of consecutive references to the
same bank. Shown in Figure 36 is a worst-case condition of references filling

TIME (MAJOR CYCLES)

REFERENCE 1

REFERENCE 2

REFERENCE 3

REFERENCE 4

X INDICATES A RETRY

FIGURE 36

50 CENTRAL STORAGE SYSTEM STORAGE BUS SYSTEM 51

the hopper and being recirculated out of order. The maximum case is shown
for reference 2 which was delayed by two major cycles. Note that each re-try
by reference 2 prevents any new address from making the delay any longer.

points up a fact about this mechanism, that holding three entries rather
than two, four, or more, d l prevent “permanent” recirculation.

The priority network includes several address sources under the central
processor and the peripheral processor headings. From the central proces-
sor, two classes of storage reference are seen :

1. instruction fetch, and
2. read and store operands.

Instruction addresses are obtained from the central processor program
address register (P), whereas read or store operand addresses are obtained
from one of two INCREMENT functional units. In the case of simultaneous
references from these two classes, priority is given to the operand address.
When one of these is entered into register MO (see Figure 35), a request for
priority 2 is made in the priority network. The priority network also ac-
counts for the presence of a recirculation priority, rejects for mixed read and
write in the hopper, and also rejects for out-of-bounds address.

The mixed read and write reject is a special case for the central proces-
sor references in order to prevent the out-of-order recirculation properties of
the Stunt BOX from causing out-of-order operations on a single storage
location.

The out-of-bounds address is determined by testing the address in reg-
ister MO against the field length (FL) which is established for each program
by the operating system. Also, note that each central processor address is
increased by the reference address (RA) also supplied by the operating sys-
tem. These will be described in more detail in later chapters.

In summary, the priority #2 for central processor references is made
up of

1. address in MO, AND
2. no recirculation requirement, AND
3. no mixed read and write, AND
4. address in MO less than FL.

,Similarly, the peripheral processor addresses are entered from several
sources. There are, of course, ten PPU’s of which only one can reference the
Central Storage at one time. The reference from the PPU is also one of three
types, a read central, write central, or initiate exchange. This last causes the
central processor to halt and perform an exchange of the contents of its reg-
isters with a sixteen-word storage block beginning a t the address specified by
the PPU.

PPU reads and writes are handled as individual 60-bit word references
requiring an address each. For the Exchange, however, only the starting
address of the exchange jump package is entered. A counter (exchange ad-

dress counter EAK) is used for the remaining storage addresses. This
counter is placed in the address path from the PPU’s to the Stunt Box for
convenience and is deactivated for reads and writes.

The tag generator is designed around a six-bit tag. Three bits are used
to identify registers for the exchange jump and central read or write. The
other bits are assigned to control, read, write, or exchange for the various
sources. Table I11 shows the net combination, using two octal digits for the
six-bit tags.

00
10
11
12
13
14
15
40
50
56
57
60
61
62

TABLE I l l

Peripheral READ
CPU-instruction fetch
CPU read to X 1
CPU read to X2
CPU read to X 3
CPU read to X4
CPU read to X 5
Peripheral Write
Return Jump or Error Stop
CPU write X6
CPU write X7
Exchange P, A 0
Exchange RA, A l , B1
Exchange FL, A2, 82

Hopper Tags

63 Exchange EM, A 3 , 83
64
65
66 Exchange A6, 86
67 Exchange A7, B7
70 Exchange XO
71 Exchange X 1
72 Exchange X2
73 Exchange X 3
74 Exchange X4
75 Exchange X 5
76 Exchange X 6
77 Exchange X7

Exchange RA ecs, A 4 , B4
Exchange FL ecs, A 5 , B 5

These tags are circulated with the addresses in the hopper with tags
distributed into control logic as needed. Some tags initiate operations which
are independent of the ACCEPT. Other operations which are dependent on
the ACCEPT are initiated by delayed copies of the tags. Therefore, once in
the Stunt Box each address tends to control itself.

D. STORAGE BUS SYSTEM

Central Storage in the Control Data 6600 is constructed on eight inde-
pendent chassis, necessitating a distribution system. Some discussion was
given earlier about the Storage Address Bus. In actuality, the Stunt Box
delivers addresses directly to each of the eight chassis. Each chassis contains
four banks of 4096 60-bit words. In the case of a 65,536 word central storage,
only four chassis are used, and the distribution system is accordingly reduced.

A comprehensive block diagram of the storage data distribution system
is given in Figure 37 (page 52).

Since there are several sources and destinations for the Central Storage
references and since there are physically independent banks of central stor-

52 CENTRAL STORAGE SYSTEM EXTENDED CORE STORAGE 53

WRITE
PYRAMID L-J

REGISTERS REGISTERS DISTRIBUTOR DISTRIBUTOR

OPERATING
REGISTERS

FIGURE 37

OPERATING
REGISTERS

age, two distributors are needed. These represent intermediate points for
concentrating and distributing between sources and destinations.

When a PPU reference to Central Storage is made, the address is de-
livered to the Stunt Box. If the reference is a Write Central, the 60-bit word
to be stored is held in a register associated with the Write Distributor. When
that reference is accepted, the tag associated with the address in the Stunt
Box hopper causes the data word to be transmitted through the Write Dis-
tributor to Central Storage. Other references are similarly handled.

Data words transfer through this system in such a way that a word to be
stored arrives a t the chassis just after the word read out of the address has
been transmitted. This can be seen in Figure 38.

It is possible to transfer data in each direction through this system, an
essential for the Exchange operation. Since it takes a finite time to move
data words through the write distributor and the read distributor, the con-
trols derived from the Stunt Box tags are spaced out in time over a wide
interval.

Looking a t the read-restore “loop” of a storage bank, it can be seen that
data words are read out to the Z register and then to the common distribution
register. The data word to be restored is then returned to the Z register.
This operation is somewhat artificial since the Z register already has the data
word. However, this is a convenient control procedure. Data read out of
any of the four banks is transmitted on the READ Bus on all storage refer-
ences. All eight chassis are connected to the Read Distributor which, in turn,
transmits to the correct destination. In the case of a STORE operation, the
readout data is effectively dropped at the Read Distributor.

E. EXTENDED CORE STORAGE

Following the ideas expressed in an earlier section, the Extended Core
Storage is inserted in the Storage hierarchy to “smooth” the traffic between
storage levels. The connection is direct “core to core” for maximum transfer
rate. The CPU contains two instructions for transferring between Central
Storage and Extended Core Storage, one for READ, and one for STORE. The
CPU may direct a transfer of any number of 60-bit words from one to the
maximum permitted by field length assignments. Extended Core Storage
addresses in the CPU are relocated by a reference address (RA ecs) similar
to, but separate from, the reference address for Central Storage. Also, a
field length (FL ecs) is assigned by the operating system. These provide a
powerful mechanism for relocation and protection in both levels of storage.
For descriptive purposes, these are shown in Figure 39.

The CPU addresses in a relative space starting at zero for both storages.

RELATIVE ABSOLUTE
ADDRESS ADDRESS

- RAecs

FIELD
LENGTH (ECSI

(FLecs)

I- FIELD
LENGTH

(FL)

I I I CENTRAL STORAGE

READ BUS WRITE BUS

FIGURE 38 FIGURE 39

54 CENTRALSTORAGESYSTEM

The two relative addresses are added by hardware a t the time of a reference.
A test of the address against the appropriate field length is also made a t the
time of a reference. No out-of-bounds references are allowed.

The Extended Core Storage is a linear-select 2-D magnetic core unit.
Th& is a very large unit in terms of the number of bits in one bank. Although
the read-write cycle time is over three times that of the central storage, the
longer word length more than offsets, a t least for block transfers. The block
diagram of Figure 40 shows the ECS unit as two dimensional, with the word
dimension of 488 bits, including 8 parity, and number of words equaling
15,744.

For purposes of separate identification, the 480-bit word is called a
super-word, or sword. Note that the sword is disassembled for transfers to
the 60-bit word used in Central Storage. For this operation the address
received from the controller contains three lower order bits to identify one
of the 60-bit words.

A typical block transfer can begin and end a t any 60-bit word. How-
ever, because the nature of the transfer is a variable length block which
usually contains more than one word, it is unnecessary to deliver an address
for each 60-bit word. It is, in fact, convenient to deliver addresses only for
swords. A “passive” form of control at the Extended Core Storage unit is
used to transfer blocks. The initial word address causes the unit to reference
the correct sword and assembles (disassembles) starting a t the correct word
within the sword. The assembly (disassembly) proceeds to the end of that
sword in ascending word addresses. The next word address delivered to the
unit will specify the first word in the next consecutive sword. This process
continues until the last sword is referenced. This last reference includes
assembly (disassembly) only to the last word specified.

170 471 172 173
175 176

ECS COUPLER AND CONTROLLER 55

ECS ECS
COUPLER COUPLER

ADDRESS
REGISTER

6600
COMPUTER

I Z REGISTER 1488
I 1

/

ECS ECS
COUPLER COUPLER

DISASSEMBLY
NETWORK

6600
COMPUTER I 1 1 DISTRIBUTION

REGISTER

FROM CONTROLLER TO/ FROM CONTROLLER

FIGURE 40

Banks of ECS may be interleaved in a manner similar to Central Stor-
age. A typical block transfer is diagrammed in Figure 41, showing the inter-
leaving and the beginning and ending cases.

SWORD ADDRESS

BLOCK TRANSFER
STARTS AT WORD ADDRESS V058
WITH LENGTH 558

FIGURE 41

With four interleaved banks it is possible to achieve a time overlap.
For a transfer rate equal to the maximum rate of Central Storage, one 60-bit
word must transfer every minor cycle, or 100 nanoseconds. Each ECS unit
requires a 3200-nanosecond cycle, moving eight 60-bit words. Therefore,
four banks can be made to move thirty-two words in the time of one storage
cycle. To accomplish this, one bank is initiated every 800 nanoseconds.

F. ECS COUPLER AND CONTROLLER

To accomplish the connection of Extended Core Storage to Central
Storage, two units are needed. The ECS Controller allows up to four 6600
Computers to be connected. Each 6600 Computer requires an ECS Coupler.
See Figure 42.

COMPUTER k

56 CENTRAL STORAGE SYSTEM

The ECS Coupler can be thought of as a functional unit of the 6600
CpU. However, no attempt is made to allow concurrent operation between
it and other functions. In fact, any continuous transfer requires complete
control over Central Storage. The CPU provides three items of data to
perform the transfer.

. Initial Central Storage Address
Initial Extended Core Storage Address
Length of Transfer

From this initial data the ECS Coupler forms a continuous stream of
Central Storage addresses and Extended Core Storage addresses, subject
only to conflicts from other accesses to ECS and to PPU accesses to Central
Storage. The ECS coupler allows such interruptions to occur a t ECS sword
boundaries. This is convenient for multiple access to ECS, each access
channel effectively getting a sword a t a time. In the case of an Exchange
Jump Interrupt, the transfer is aborted a t the next sword address.

The ECS Coupler includes counters which increment Central Storage
and ECS addresses and the block length to zero. At the beginning of a block
transfer, the block length is tested against the ECS bounds protection FL em.
If this boundary is exceeded, the operation is aborted. Also, a t the beginning
the relative address RA ecs is added to the ECS address from the CPU to
form the absolute initial address. From then on, the absolute address is
used by the Coupler for ECS. The Central Storage relative address and
bounds test is, of course, taken care of by the Stunt Box. Therefore, the
ECS Coupler delivers addresses to the Stunt Box in the same relative manner
as the CPU.

The ECS Controller provides access to four 6600 Computers. Each
access channel is serviced on a round-robin basis. A scanner in the Controller
tests requests each 800 nanoseconds to determine the next “user.” If only
one channel is active, the scanner is able to keep the total transfer rate a t
maximum. If, however, more than one channel is active, the rate per channel
is reduced accordingly. This reduction is affected by the kind of bank con-
flict introduced.

CENTRAL PROCESSOR
FUNCTIONAL UNITS

The central premise of the design of the Control Data 6600 is called
“functional parallelism.” Particularly in the Central Processor (CPU), this
idea is essential to the design.

In special purpose digital devices hardware can be included to perform
the necessary “housekeeping” tasks. By the use of this hardware, such tasks
are eliminated from the apparent time to complete execution, since they are
performed in parallel with the main functions being executed. The case is
usually very specialized, however. This valuable technique can be applied
to general purpose computers by including several independent functional
units. Some of the units may be regarded as “housekeeping” units; others
are the main processing units.

The 6600 Computer depends on the existence of separate functional
units in the CPU for this kind of facility. Special purpose instructions are
unnecessary to a great extent in this type of organization. Specialized
handling of the control over the separate functions can, in theory, separate
the critical path functions from the extras. In later sections examples will
be given of the detailed effect of this type of control. In any event, the fact
remains that some independence of function is necessary.

Ten functional units make up the arithmetic portion of the 6600 Central
Processor. These are:

Booleanunit
Shift Unit

58 CENTRAL PROCESSOR FUNCTIONAL UNITS

3 3 3 3 3

BOOLEAN UNIT 59

3 3 3 3 18 30 bit

Fixed Add
Floating Add
Multiply (2)
Divide
Increment (2)
Branch

Two identical units are provided for the Multiply and Increment func-
The logical properties of these units are given in the tions for emphasis.

block diagram of Figure 43.

TEMPORARY
REGISTER

CONTROL SIGNALS
CPU TOIFROM SCOREBOARD

OPERATING
REGISTERS

GO READ

GO STORE

REQUEST RELEASE

CONTROL

1““’-
FIGURE 43

The operation is generally three address in nature, with some excep-
tions. When both operands are available in the CPU Registers, the input
operands are transferred to the functional unit. On completion, the result is
temporarily deposited in a result register. The control system is responsible
for removing this result, transferring i t to the CPU Registers, and releasing
the functional unit.

Because the functional units are essentially separate and independent,
the design of each unit can be quite specific and optimum. The selection of
functions and the properties of each function are consistent with this in-
dependence. Total time for a function includes the “extra” minor cycle to
send a result to the CPU registers and through to a point on the register out-
put bus.

Instruction formats within the Central Processor are 15 bit and 30 bit
as shown on page 59.

The 15-bit format is the principal one used, which is testimony to the
value of the CPU registers. While past computers utilized a single “accumu-
lator” register to good advantage, the instruction required a storage address
similar to the K field shown. This caused inefficiencies in two ways, if not

F m i j k

15 bit

Where F-denotes the major class of function,
m-denotes a mode within the functional unit,

i-identifies one of eight registers within the proper group of X, 8, or A registers,
j-identifies one of eight registers within the proper group,
k-identifies one of eight registers within the proper group,
K-an 18-bit immediate field used as a constant or Branch destination.

more. A first, and obvious, inefficiency was the length of the instruction
word itself, using storage space and time to fetch. A second inefficiency was
the use of single-address procedures, implying the single accumulator reg-
ister. Going beyond single-address, of course, makes the instruction length
even worse.

With the introduction of additional CPU registers, the problems of
instruction length and of single-address technique are removed. The 6600
Central Processor can utilize a very efficient three-address scheme, as shown,
with very short instructions.

Although each register designator, i, j, and k, refers to one of eight
registers; the function F controls the proper class of register. Three classes
are included, as follows:

X 60-bit Operand Registers 8 used.
B 18-bit Index Registers 8 used.
A 18-bit Address Registers 8 used.

The X registers are the principal transient registers for data words
within the Central Processor. Binary fixed-point numbers, floating-point
numbers, packed alphanumeric data, and so on are handled through the
X registers. In general, data words enter a specific X register from Central
Storage; they are operated on by functional units and are finally returned to
Central Storage from a specific X register.

The 18-bit Address registers control the Central Storage references and
can be indexed by appropriate use of the 1Sbit Index registers. The Index
registers are also convenient for fixed-point integers, floating-point exponent
manipulation, control of shifts, and so on.

A. BOOLEAN UNIT
Of all the functional units, the Boolean unit is the simplest and easiest

to describe. This is, of course, the logical unit, performing the fundamental

60 CENTRAL PROCESSOR FUNCTIONAL UNITS BOOLEAN UNIT 61

logical operations defined in Boolean algebra. Eight functions are provided
as described in the list of instructions below. Note that the total instruction
list is provided in Appendix A.

10 Transfer Xi to Xi.
11
12
13

Logical Product of Xj and Xk to Xi.
Logical Sum of Xi and Xk to Xi.
Logical Difference of Xj and Xk to Xi.

14
15
16
17

Transfer Xk complement to Xi.
Logical Product of Xj and Xk complement to Xi.
Logical Sum of Xj and Xk complement to Xi.
Logical Difference of Xi and Xk complement to Xi.

These instructions describe the logical functions operating on input
operands Xj and Xk with the result going to Xi. These operands and the
result are held in the CPU Registers of 60-bit word length, identified as the
X Registers. The subscript identification i, j , or k refers to a designator
field in the instruction referring to the correct register.

The terms “Logical Sum,” “Logical Product,” and “Logical Difference”
refer to the following.

Logical Sum Inclusive OR
Logical Product AND
Logical Difference Exclusive OR

The Boolean Unit requires 300 nanoseconds, or three minor cycles
from the time input operands are sampled, until the result is available in
the CPU Registers for sampling by another functional unit. This is a mini-
mum case and may be longer if the result is held up because of other use of
the result register.

A detailed block diagram is shown in Figure 44.
Operands are entered in input registers, the data coming from Xj and

Xk registers. Five control bits are stored in the Boolean unit at the time of
ISSUE, essentially preparing it for the desired operation. The Scoreboard
unit determines when the operands are sent to the unit and sends a GO
BOOLEAN signal. This signal enters the operands into the unit, performing
a complement as necessary. The complement is the Boolean NOT and is
only required on the Xk entry path.

Once the data operands are entered, a period of time dependent on the
“distance” through the network is required before the result can be stored.
This time is shown as 125 nanoseconds in Figure 44. The “request release”
signal is sent to the SCOREBOARD a t a time sutliciently early in the unit’s
operation to allow a GO TRANSMIT signal to return just after the result has
been stored in the temporary result register. This timing is such that the
request is sent before the input operands arrive a t the Boolean unit!

A detailed logic diagram for one bit is shown in Figure 45. The Boolean
unit is mounted in one chassis (number two) and utilizes four types of logic
module, excluding control. Data enters an input register from the coaxial

Xk-

XI -

U, f r n
TRANSLATE

FROM -
SCBD

RESULT I

INPUT
REGISTER

ENABLE
TRUE OA
COMPLEMENT

MODE
BITS 3 DIFFERENC
mi7 4 TRANSFER

4 ,

- 31- XFR GO

BOOLEAN
75 nsec 25 nsec 125 nsec

I

REQUEST
RELEASE

I I

FIGURE 44 The Boolean functional unit.

R 0 6

FIGURE 45

62 CENTRAL PROCESSOR FUNCTIONAL UNITS

Code

10

11

12

13

14

15

16

17

FIXED ADD UNIT 63

Name Function

TRANSMIT X j 4 X i

LOGICAL
PRODUCT Xj*Xk

LOGICAL
SUM Xj + Xk

LOGICAL
DIFFERENCE Xj - Xk

TRANSMIT Xk-+Xi

LOG I CAL
PRODUCT X j - x k

LOGICAL
SUM Xj + X k
LOGICAL
DIFFERENCE Xj -%

-

cable in the form of a 25-nanosecond pulse. Mode bits have been established
in advance of this time. Therefore, the network following these input reg-
isters will react to the data entering. This forms a stable result as an output
of the GB module by the time delayed GO BOOLEAN samples the result into
the result register.

The control signals are steady signals with the exception of the GO
BOOLEAN, TRANSMIT, and the CLEAR REGISTER signals. The complement
signal enters the GA modules, forming the control terms B and C. B selects
the true output, and C selects the complement output; the result is OR’ed
and sent to the Boolean Network Module GB. Four control signals are
used to control the network module. These signals are shown in derived
form in Table IV.

TABLE I V Boolean Functional Unit Reference Chart

The network in module GB is an excellent example of the intimate
design relationship of circuit ground rules and logic. The output of the GB
module can be the AND of the inputs, the inclusive OR, the exclusive OR, or
a selection of one input. Control is accomplished by the four terms A, 6, C,
or D. Combinations of these controls provide for these outputs. Control of
the complement of input operand Xk is accomplished on GA.

The logic is split between the modules in order to gain an optimum use
of pins, module types, and especially to gain the maximum load on control

terms. For example, the GA module actually contains four bits of one
operand, either Xi or Xk. Therefore, the loads on the control terms A, C, D,
and E are four each, one less than the ground rule limit. However, the load
on control term B is five, or the limit.

An additional limit is the number of transistors per module, a nominal
maximum of 64. By counting arrowheads on a GA module in the diagram of
Figure 45, it can be seen that fourteen transistors per bit plus five transistors
for control are required, totaling 61. Pin count on this module is three per
bit plus four control, totaling 16 and not even coming close to the maximum
of 28.

With the same kind of constraint on the GB module, only three bits of
network are contained on each. The transistor count of 18 per bit and four
control totals 58.

B. FIXED ADD UNIT

The Fixed Add Unit is the next in ascending order of complexity. The
unit is an integer arithmetic unit which performs one’s-complement fixed-
point addition or subtraction on 60-bit numbers. The one’s-complement
representation of binary numbers refers to the treatment of negative num-
bers. The sign bit is the left-most, or most significant bit of the number. If
the sign bit is zero, the number is considered positive with its binary point
just to the right of the least significant bit. If the sign bit is one, the number
is considered negative with similar binary point placement and with each
“zero” acting as a “one” does in the positive case. This can be charted as in
Figure 46.

/
INTEGER IOoi 1011 1101 1iil-006! ooii oio1 0111 BINARY
VALUE I 1000 ! 1010 ! 1100 ’ ’ lllOrOOOO ’ 0010 0100 o(10 REPRESENTATION

FIGURE 46

This chart is made for a register length of only four bits but shows the
condition of a positive and negative zero representation.

The Fixed Add Unit uses a scheme of parallel addition which forms all
bits of the sum simultaneously. To explain the technique, consider a six-bit

64 CENTRAL PROCESSOR FUNCTIONAL UNITS FIXED ADD UNIT 65

add unit operating as a serial adder. One can construct a set of equations
describing the step-by-step results of addition.

Sum n = AnBnh + AnBncn + AnBnCn + AnBnCn,

where An = 1st operand bit n,
Bn = 2nd operand bit n,
Cn = Carry entering the nth bit.

Note that one’s complement arithmetic requires an “end-around” carry
from the most significant bit to the least significant. In bit serial adders
this, therefore, requires another pass through the adder.

(V-2) Carry n + 1 = AnBnen + AnBnCn + AnBnCn + AnBnCn.

Simplifying these two equations,

Sum n = (An @ Bn) @ Cn,

where 0 is the symbol for Exclusive OR.

Carry n + 1 = AnBn + (An + Bn)Cn. (V-4)

Of interest is the case of the sum of + 1 and -1, using the above
equations.

A = 0 0 0 0 0 1 +1
B = l l l 1 1 0 -1

Carryn+ 1 = O 0 0 0 0 0

S u m n = 1 1 1 1 1 1

This is, of course, the “negative” zero and is a perfectly correct answer.
It makes, however, for difficulty in interpretation and in conversion to dis-
play code or print code. This negative zero arises from the choice above of
an “additive” type of adder. To produce a “positive” zero result i t is neces-
sary to construct a “subtractive” type of adder. To show this type a similar
set of equations is given below.

_ _ -
Sum n = XnYnBn + XnYnBn + XnYnBn + XnYnBn, (V-5)

where Xn = 1st operand bit n
Yn = 2nd operand bit n
Bn = Borrow entering bit n

(‘4-6) Borrow n + 1 = XnhBn + XnYnBn + XnYnBn +XnYnBn

Simplifying these equations,

Sum n = (X @ Y) @ Bn (V-7)
Borrow n + 1 = XnYn + (Xn + h) B n (V-8)

Now, taking the same case as above,

x = o o o 0 0 1 +1
Y = l l l 1 1 0 -1

Borrow n + 1 = 0 0 0 0 0 0
Sum = o o o 0 0 0

The result is a more natural and convenient form. Note that only one
combination of operands to such a “subtractive” adder will produce a nega-
tive zero, that is, two negative zeros as input. This complication of one’s
complement arithmetic is belabored here because of the need to test for the
zero case simply.

The above exercise is given as a preparation for the discussion of the
parallel network used in the Fixed Add unit. A parallel network can be
made to act in the same manner as indicated in the above exercise. Again
taking a six-bit case, the following series can be formed.

Sum n = (xn Yn) @ Bn (V-9)
Borrow n + 1 = XnYn + (Xn + Yn)Bn (V-10)

Forming Borrows in groups of three,

To close this six-bit adder for one’s-complement use, B6 is made equal
to Bo. Examination of the logic of the add network derived above will show
that no insoluble cases exist.

For the purpose of clarity, the logical terms above on the right-hand
sides which do not include a B term are defined as Borrow Generation terms.
The logical terms which AND with a B term are called Borrow Pass terms.

66 CENTRAL PROCESSOR FUNCTIONAL UNITS FIXED ADD UNIT 67

For example,

6 5 = X474 + X 3 7 3 6 4 + 74) + (% + 73)(T74 + 7 4 P 4

Borrow Generator Borrow Pass

It should be evident that all Borrow Generate and Borrow Pass terms
can be simultaneously solved. However, the Borrow terms themselves must
wait for these. For the description of this portion of the Fixed Add Unit with
some detail, see Figure 47.

This drawing simplifies the discussion by showing the “interface” in-
formation passing from module to module within the Fixed Add Unit. Al-
though only six bits were defined, it is a straightforward exercise to develop
the completed network.

Operands X and Y refer to the two input operands to the unit. Groups
of three bits each are entered into each FA module.

1. X O Y O + &is0

2. XOYO (Inverted)
3. XOVO (Inverted)

5. X171 (Inverted)
4. X l Y l + XlVl

6. X2Yz + X2Y2

7. (Xo + 7O)(Xl + VI@Z + 72)
8. 3272 + XiVI(X2 -+ Vz) + XoTo(X1 + 71)(X2 + Y2)

The first six of these are wired directly to a “companion” FE module to
complete the local portion of the network. Item 7 is called the Borrow Pass
for the three-bit group. Item 8 is correspondingly called the Borrow Genera-
tion from this three-bit group.

Four groups of three-bit combinations are handled within the FB
module. Similarly, five sections of such groups are combined in the FD
module to complete the borrow logic for all 60 bits. Summarizing the usage
of these modules:

Module FA-20 used-contains three bits each of input operands X and Y;
Module FB-5 used-combines intermediate borrow logic for each section of

Module FC-1 used-combines intermediate borrow pass terms;
Module FD-4 used-combines borrow logic for the sections;
Module FE-20 used-completes the sum and borrow logic to form the result for

twelve bits;

three bits each.

This add network illustrates the case of multiple paths through a net-
work with different “lengths.” For example, the longest path in Figure 47
requires sixteen inversions, not including the input flip-flop. Similarly, the
shortest path is only five inversions, again not including the input flip-flop.

FB
BORROW AND PASS LOGIC INTERMEDIATE PATH ,

I
I
I

I
I
IBORROW PASS
I I

) X,Y, +Z2Y2-----+

X,Y, +R,T------- -4 CONTAINS
SIX BITS
OF INPUT

U

FIGURE 47

A number of intermediate lengths can be seen in the network also. In the
case of the Fixed Add Unit, the differing path lengths cause no difficulty be-
cause the input registers are held stable until all paths are stable.

The block diagram of the Fixed Add Unit is given in Figure 48. In this
unit, no temporary result register is needed because the input registers serve

68 CENTRAL PROCESSOR FUNCTIONAL UNITS DATA TRUNKS 69

SCBD

XI

Xh

im = X 6

LONG ADD UNIT - BLOCK DIAGRAM

Long Add w
L

BRANCH

I I
~~

FIGURE 48 Long add unit-block diagram.

no other function and can be held stable until the result is sent direct to the
CPU register.

Only two CPU instructions are executed by the Fixed Add Unit.

36

37

Integer Sum of Xj and Xk to Xi.

Integer Difference of Xj and Xk to Xi.

These two operations are performed on 60-bit quantities. The Integer
Difference is accomplished by loading the complement of register Xk into one
of the Unit input registers.

The Fixed Add Unit is also utilized as a “partner” to the Branch unit
for conditional tests of selected X registers, as follows.

Conditional Branch Instructions on Xj

030 Go to K if Xi = 0
031 Go to K if Xj # O
032 Go to K if Xj is positive
033 Go to K if Xj is negative

034 Go to K if Xj is in range
035 Go to K if Xj is out of range
036 Go to K if Xj is definite
037 Go to K if Xi is indefinite

These instructions will be described in more detail in Chapter VI. For
the purpose of this discussion, only the usage of the Fixed Add Unit is of
interest. Tests are made in the following manner.

030 and 031-The zero tests check the full 60-bit word in Xi. Both
“positive” and “negative” zero are considered zero in this test,
thereby allowing use for fixed and floating point numbers.

032 and 033-The sign tests check only the most significant bit of
Xi, the sign bit. Tests are valid for both fixed and floating
point numbers.

034 and 035-The range tests check the most significant twelve
bits of Xj for the floating point represention of infinity. This
is defined as 3777 (octal) for positive infinity and 4000 for nega-
tive inhi ty , with all lower order bits ignored. The number in
Xi is assumed to be a floating point number.

036 and 037-The definite/indefinite tests check the most signifi-
cant twelve bits of Xj for the floating point representation of
indefinite. This is defined as 1777 for positive indefinite and
6000 for negative indehite, with all lower order bits ignored.
The number in Xj is assumed to be a floating point number.

The above tests are made during the execution of the corresponding
Branch instruction. At the start of the Branch, both the Branch Unit and
the Fixed Add Unit are started together, as “partners.” The Fixed Add Unit
proceeds through its execution sequence providing only the sign tests and
zero tests. The range and indefinite tests are performed external to the unit
on its input bus coming from the CPU X registers, as a convenience.

C. DATA TRUNKS

In the preceding discussion of the Boolean and Fixed Add Units, it was
apparent that one-third of the execution time is taken up in transferring data
to and from the CPU registers. A considerable percentage of the CPU hard-
ware is devoted to the data trunks for this task. To balance this hardware
against effective performance of the functional units, several groupings are
made as shown in Figure 49 (page 70).

In the case of the Boolean and Fixed Add Units, there are two 60-bit
input trunks and one 60-bit result trunk. Three independent trunks are in-
volved insofar as the CPU registers are concerned. These trunks are de-
signed to allow simultaneous traffic on all four sets of trunks as shown in
Figure 49. This means that two input operands may transfer to a selected
functional unit in each of Groups I, 11, and 111. Also, one 60-bit word may
transfer to Central Storage for a total simultaneous readout of seven registers
in any one minor cycle. The trunks are designed to be reused on a new selec-
tion every minor cycle.

70 CENTRAL PROCESSOR FUNCTIONAL UNITS

Y

SHIFT UNIT 71

OPERAND 2

DATA TRUNK OPERAND I
I

EXIT 5
DNTROL

12
@ OPERAND 2

DATA TRUNK 8 OPERAND I

TiRAND I 1]
OPERAND 2 ’. 1

REAl

VI

@
DATA TRUNK 4‘

FIGURE 49 Data trunks.

Going in the reverse direction, only one result is transferred from a func-
tional unit to the CPU registers, with the special exception of the Shift Unit.
Again each grouping can transfer a word simultaneously for a total input to
the CPU registers of five words in any one minor cycle.

The groupings of functional units are chosen for physical placement
reasons as well as certain performance advantages. For example, it is an
advantage to the ADD unit to be located in Chassis 8 in close proximity to the
most significant bits of the X register. This convenience, however, limited
the available space for other functional units. Note also that the Boolean
and Divide Units are connected to the data trunks through an intermediate
chassis on which are contained the Multiply Units.

A further choice in the groupings relates to the level of data trunk
traffic expected. As will be seen, the two Increment Units can cause a traffic
of one operand on a trunk every two minor cycles. The group of Multiply
Units and Divide Unit, excluding Boolean, can cause a traffic of one operand
on a trunk in just over every four minor cycles. With the Boolean Unit able
to cause one operand on a trunk every four minor cycles, this grouping nearly
matches the Increment Unit grouping.

The data trunks are so arranged that a result can be entered into a

selected register and be immediately transferred on a trunk to the input of a
functional unit, all within one minor cycle. For the purpose of describing the
time taken by a functional unit, this minor cycle is always included. For ex-
ample, the Boolean time is two minor cycles, starting from the input oper-
ands, plus one minor cycle “through” the result register, for a total of three
minor cycles. Obviously, any confict in the use of a data trunk by members
of a group will add a minor cycle to the “loser.” To resolve conflicts, a fixed
priority system is used in each group. These are listed in the order of de-
scending priority within each group below.

Read Operand Trunk Result Trunk

Group I Divide Boolean
Multiply I Divide
Multiply II Multiply I
Boolean Multiply II

Group II Add
Shift
Fixed Add

Shift
Add
Fixed Add

Group Ill Increment I Increment I
Increment I I Increment I I

The priorities are slightly different for the Read Operand Trunk and
the Result Trunk in deference to the level of “traffic” expected on each.

Additional discussion of the exit and entry control of the CPU registers
in Chapter VI will further clarify the extent of the hardware in the data
trunks.

D. SHIFT UNIT

The Shift Unit performs shift, normalize, pack, unpack, and mask oper-
ations. The execution time of normalize operations is 400 nanoseconds, or
one minor cycle greater than the other Shift operations. Again, this time
includes a minor cycle to store the results in the CPU registers.

The Shift Unit is slightly different from other functional units. For ex-
ample, the jk field of all Shift instructions is inserted in the unit directly from
the instruction at ISSUE time, for use in certain instructions. Also, the Shift
Unit has two result trunks to handle the normalize and unpack instructions.

The following instructions are listed for the Shift Unit.

20
21

22
23

Shift Xi Left jk places
Shift Xi Right jk places

Shift Xk nominally Left Bj places to Xi
Shift Xk nominally Right Bj places to Xi

72 CENTRAL PROCESSOR FUNCTIONAL UNITS SHIFT UNIT 73

24
25

26
27

43

Normalize Xk in Xi and Bj
Round and Normalize Xk in Xi and Bj

Unpack Xk to Xi and Bj
Pack Xi from Xk and Bj

Form jk Mask in Xi

The Shift Unit operates in a manner similar to the Boolean and Fixed
4dd Units. Control bits are entered in the unit a t the time the instruction is
issued. A timing sequence is initiated by the Scoreboard control, and results
are held until released for transfer to the CPU registers.

Overall operation of this unit is described as follows according to the
instruction groups.

20 and 21-Shift jk-These instructions shift the contents of CPU
register Xi left or right a total of jk bit positions. The shift
count comes directly from the jk field of the instruction.

Left shift is circular, such that the most significant bit is rein-
serted a t the least significant bit position of the word for a shift
of one place.

Right shift is end-off with sign extension.

22 and 23-Shift Bj-These instructions shift the contents of CPU
register Xk left or right, placing the result in CPU register Xi.
Xk and Xi may be the same register. The shift count is the
absolute magnitude of the signed number in Bj made up of the
sign bit and the lowest order six bits.

The direction of the shift is determined by the sign of Bj and
the instruction. A positive sign in Bj causes the direction to be
as ‘‘n~minally’~ stated. In other words, instruction 22 states
Shift Xk nominally left Bj places and will cause a left circular
shift only if Bj is positive. Similarly, instruction 23 will cause
a right end-off shift only if Bj is positive. If Bj is negative, the
directions will reverse.

Note: These instructions are very convenient for scaling float-
ing point numbers to align the binary point. For example, if
the floating point number +067000-E11 were unpacked, the
exponent would appear in a B register as -11 (octal). A 22
instruction specifying the X register and the shift count in the
B register would shift the number correctly to the right 11 bit
positions to align the binary point to the right of the least sig-
nificant bit, or +000067.

Note: The floating point format is described in the next section
of this Chapter on the ADD Unit.

24 and 25-NORMALIZE-These instructions determine the num-
ber of leading zeros in the coefficient of the floating point num-
ber located in the Xk register. The number may be positive
or negative. (For negative numbers, the count of leading ones
is determined.) The number of leading zeroes, excluding the
sign bit, is the correct number of left shifts to normalize the
number. This shift count is placed in CPU register Bj and is
also iised to control a following left shift.

26 and 27-PACK/UNPACK-These instructions are used to sepa-
rate or couple the elements of a floating point number. The
exponent is found in the CPU register Bj with the coefficient in
a CPU X register and the combination also in a CPU X
register.

These instructions provide a convenient means for converting
between fixed point integers and floating point numbers.

43-MASK-This instruction fo rm a mask in CPU register Xi. The
six-bit quantity jk entered directly from the instruction defines
the number of ones in the mask as counted from the highest
order bit in register Xi. This is a simple means of forming a
contiguous string of ones in a 60-bit word for simple masking.
This can be followed by a left-circular shift to place it correctly
in the word.

. The Shift Unit contains an advanced form of parallel shifting network.
In hde r computers, shifting was accomplished using two registers and trans-
ferring between them with a single-bit displacement. This form of shifting
required a variable number of shift cycles dependent on the number of places
to be shifted. A number of awkward schemes for minimizing the number of
shifts have been used. Particularly in floating point addition and in normali-
zation or alignment processes, the shift operation is a significant consumer of
time.

The 6600 Computer offered an opportunity, in its framework of separate
functional units, to provide a shift apparatus which would not be variable in
time. The principle of operation is based on six columns of logic, each column
controlled by one of the bits of shift count. If the shift count bit is zero, the
entire column is transferred “straight through” to the next column. If the
shift count bit is one, the entire column is transferred to the next column,
displaced by an amount corresponding to the specific weight or bit of shift
count. This is shown graphically in Figure 50. One bit is shown shifted by
three shift counts in octal: 00, 37, and 77.

The shift logic is made up as a very simple gating arrangement to ac-
complish the selection between no shift and a shift specified by SKn. A small
section of the network is shown in Figure 51 giving, in this case, both the right

74 CENTRAL PROCESSOR FUNCTIONAL UNITS

SHIFT +-

THIS
MANY

PLACES

BIT 0-

SHIFI’UNIT 75

FIRST COLUMN

i k SK2 ~

K 4 SK5

SK - SHIFT COUNT

SECOND COLUMN P

FIGURE 51

and left shifts. This assumes that only two bits of network are contained on
a module.

If the network is contained in the manner shown, two columns are held
in a single set of modules. Bits are placed in the modules so that physically
adjacent bits are separated by an amount equal to the shift accomplished
between the first and second columns within the module. Shifts external to
the module are, of course, easily wired to the correct input pin on the correct
module.

Note that the network requires a fan-in to the OR element of three and
a fan-out of three. Each column uses exactly the same number of logic ele-
ments. A single module type is used, except for some special end cases. The
right shift is complicated by the need to extend the sign bit. However, this
extension is accomplished by generating the sign bit ANDed with the column
controls in the quantity needed for each column, as follows.

Right shift count SKo = 1 AND Sign Bit- 1 needed.
SKI = 1 AND Sign Bit- 2 needed.
SK2 = 1 AND Sign Bit- 4 needed.
SK3 = 1 AND Sign Bit- 8 needed.
SKI = 1 AND Sign Bit-16 needed.
SK5 = 1 AND Sign Bit-32 needed.

These signals are entered into the Shift network by fan-out circuits as
needed. Note that the first columns need the least such terms. Therefore,
fan-out requirements for the last columns are easily achieved without inter-
fering with the timing.

The Shift network is assembled on QF modules with three bits of two
coltimns on each module. Four special KF modules are substituted for four
QF for special end cases. The total number of modules, excluding controls,
in the Shift network is 60, a small number indeed, considering that only one
minor cycle is needed to pass through the network, accomplishing any shift
ranging from one to 60, either right or left.

NORMALIZE NETWORK

For instructions 24 and 25, an additional network called the normalize
network is used. This network determines the number of bits of left shift
necessary to normalize and stores this six-bit number in the shift control
counter SK. A left shift is then performed in the shift network under control
of SK.

To simplify the normalize network, the number to be normalized is first
forced positive on entry to the Shift Unit Input Register. If complementing
is required, a “complement” flag is set.

The coefficient portion of the floating point number to be normalized is
examined in six groups of eight bits each. Two immediate determinations
are made.

76 CENTRAL PROCESSOR FUNCTIONAL UNITS ADDUNIT 77

1. The highest order “one” in each group of eight bits.
2. The highest order group with a “one.”

The first determination is made simultaneously in six identical modules,
shown in Figure 52. The second determination is made similarly in one extra
module. The result of the second test is an octal digit defining the number
of eight-bit shifts which must be taken. The result also selects which of the
other six outputs should be taken as the number of single-bit shifts to be
taken. These two qiiant,ities are merged to form the six-bit shift count in SK.

-
BIT 7

SELECT

7-

B I T 5 LOWER
OCTAL

SHIFT
COUNT,

m
IF

ISELECTED

Q NO “ONES“

.$, ‘YgNT -TO SELECT
NETWORK

L
A

BIT0 A fK

FIGURE 52

The first test is accomplished by a simple test of each bit of eight com-
pared with the bits more significant in the group. A three-bit number is
formed directly from the logic, and a zero test of all bits is also formed.

During a normalize shift, the floating point coefficient is shifted left ac-
companied by a corresponding reduction of the exponent value. I t is possible
to cause underflow during the normalize operation.

Rounding is accomplished by appending a “one” to the coefficient a t the
beginning of the normalize shift. This assumes that the number being
rounded is single precision, which is, of course, precisely the way i t appears to
the Shift Unit. The round bit is forced into the shift network and appears as
one bit “to the right” of bit position 0 during the left circular shift.

The remainder of the logic in the Shift Unit is devoted to the Pack,
Unpack, and Mask instructions and to the determination of the direction of
the shift, whether left or right.

The mask operation utilizes a forced “one” in bit 59, the highest order
bit, similar to the round operation but followed by a right shift rather than
left.

Note also that this functional unit does not utilize a temporary result
register since the input registers are held tinti! release. As a result, the nei-
works are allowed to stabilize before the result is sampled and the unit
released.

E. ADD UNIT

The Add Unit is designed to perform floating point addition and subtrac-
tion. These computations may be made in rounded single precision or un-
rounded single and double precision. Total execution time is 400 nanosec-
onds including one minor cycle for placing the result in the selected CPU
register. The following instructions are executed in the Add Unit.

30
31
32
33
34
35

Floating Sum of Xi and Xk to X i
Floating Difference of Xi and Xk to Xi
Floating Double Precision Sum of Xj and Xk to Xi
Floating Double Precision Difference of Xi and Xk to Xi
Rounded Floating Sum of Xi and Xk to Xi
Rounded Floating Difference of Xi and Xk to Xi

Floating point numbers utilize the following format.

Coefficient

48

Biased
Exponent

Binary
Point

One’s complement number representation is used on all numbers within
the 6600, including the exponent and coefficient of the floating point
numbers.

A simple description of this number representation is given in an earlier
section of this Chapter on the Fixed Add Unit.

The use of the integer representation of the coefficient is a particularly
interesting convenience. This allows short fixed-point integers held in the
Index registers to be simply converted into floating-point numbers. A pack
instruction can be used to introduce the exponent bias without any shift or

78 CENTRAL PROCESSOR FUNCTIONAL UNITS

exponent adjustment needed.
operating on a base two, as follows.

The exponent is a signed binary integer

Floating-point number, K * 2e
where K defines the 48-bit one’s complement coefficient with its sign being

the sign bit of the entire number,
e defines the 11-bit signed exponent.

The bias is applied to the exponent in order to place the “zero” exponent
in the middle of the range of numbers. The following numbers are examples,
given in octal.

0000 000. . . 000. = +0*2-1777, a small number indeed.
2000 000. . . 001. = + 1 2+0, the integer 1.
5777 7 7 7 . . . 712. = -65.2+0.

The last example shows that the exponent is complemented if the num-
ber is negative. The net effect of the bias and the negative-number treat-
ment on the exponent is to maintain a consistent ascending order to all
numbers from smallest to largest. This holds true for fixed-point and
floating-point numbers.

The exponent bias is very simply applied to the “assembled” floating-
point number by reversing the exponent sign bit. Therefore, manipulation
of exponents within the functional units must also make this reversal. For
clarity, the following cases are given.

2000 xx . . . x = +x.20
5777 xx.. . x = -Tim20
2016 X X . . . x = +~.216
1735 X X . . . x = + ~ * 2 - * *

Provision is made for the treatment of overflow conditions in this for-
mat. Three cases are important. These are the infinite case, the indefinite
case, and the underflow case.

Any result with an exponent so large that it reaches or exceeds the
upper limit of 3777 (positive) or 4000 (negative) is treated as an infinite
quantity. Recognition of this exponent in input operands can produce an
error exit, if selected.

The use of infinity, zero, or indefinite operands may produce an in-
definite result, as shown in the following table. An exponent of octal 1777
and a zero Coefficient are packed in this case. An error exit may occur on
recognition of this quantity or its complement as an input operand, if
selected.

Any result with an exponent less than or equal to the lower limit of
octal 0000 (positive) or 7777 (negative) is treated as zero. A result which
reaches a value of zero exponent, but with a nonzero coefficient is left that
way. Any following usage, however, considers the number zero for purposes
of infinity and indefinite.

Operands

+o=oooo x . . . x
-0 = 7777 x . . . x

+ca=3777 x . . . x
- ~ = 4 0 0 0 X . . . X

+ I N D = 1777 X . . . X
-IND = 6000 X . . . X

ADD UNIT 79

Results

0 = 0000 0 . . . o
IND = 1777 0 . . . 0
+ m = 3777 0 . . .O
--03 =40000 . . . 0

The Add Unit is an example of one key design advantage arising from
separate functional units. This allows a design uncluttered by any functions
other than the floating addition and subtraction. The resultant design pro-
vides a minimum execution time for this function.

Addition of two floating point numbers requires that the binary points
be aligned. The approach taken in this unit is to hold the number with

TABLE V Nonstandard Floating Point Arithmetic

The following is a tabulation of operations (Add, Subtract, Multiply, Divide) using
various combinations of operands.

KEY:

ADD
Xi = Xj + Xk

(Instructions 30, 32, 34)

- -OO IND - W -ca

SUBTRACT
Xi - Xj - Xk

(Instructions 31, 33, 35)

Xk
I - I

80 CENTRAL PROCESSOR FUNCTIONAL UNITS

+N
-N
+O
-0
+ w

2 I N D
-03

ADDUNIT 81

+N -N +a - w 0
-N +N - w . + w 0
0 0 IND IND 0
0 0 IND IND 0

+ w - w + w --oo IND

IND IND IND IND IND
- W + W -CO + W IND

t I N D

TABLE V (continued)
MULTIPLY

Xi = Xi * Xk
(Instructions 40, 41, 42)

Xk

+N -N +O -0 +03 - w t l N D

+N -N 0 0 + w - w IND
-N +N 0 0 - w + w IND
0 0 0 0 IND IND IND
0 0 0 0 IND IND IND

+ w - w IND IND + w - w IND
- w + w IND IND - w + w IND
IND IND IND IND IND IND IND

DIVIDE
Xi = Xj/Xk

(Instructions 44, 45)

I Xk

I +N -N +O -0 + w - w L l N D

0 IND
0 IND
0 IND
0 IND
IND IND
IND IND
IND IND

larger exponent, while shifting the number with smaller exponent to the
right. The amount of shift is determined by subtracting the smaller expo-
nent from the larger.

As an example, add the following octal numbers:

Xj = 0 2005 0 . . .05244. (+5244.25)
Xk = 0 2016 0 . . .07305. (+7305*216)

The number in X k is held, while the number in Xj is shifted to the right

The new positions of these coefficients can be shown as if in registers of
a total of 11 (octal) places.

double length, as follows:

Xk 0 . . ,07305.0.. 0
Xi (Shifted) 0 05.2440. . . 0

Sum 0 . . ,07312.2440.. . O

The binary point as shown in the sum is in the same position as the
number in Xk. Therefore, the single precision result of this addition would
be the upper half as follows:

Single precision sum 0 2016 0 . . .07312. (7312 * 2 9

For the case of double precision solution, the lower half can also be
taken, but the exponent must be reduced to account for moving the binary
point to the right 48 places. The exponent for the lower half is thus deter-
mined by reducing the upper half exponent by 60 (octal). This is accom-
plished by first removing the bias, as follows:

Octal exponent = 0016 - 60 = -42

This is described in the 11-bit exponent field, without bias, as 3735.
Applying the bias by simply reversing the exponent sign bit produces the
exponent of 1735. Therefore, the double precision result of the above addi-
tion would be the lower half, as follows:

Double precision sum 0 1735 2440. . . 0. (2440. . . 0 - 2-42)

This is, of course, something of a misnomer since the double precision
sum is, in fact, both the upper and lower halves. However, the two separate
halves are now placed in a form in which subsequent double precision opera-
tions are entirely valid.

Other circumstances possible during an Addition or Subtraction include
overflow and underflow. An example of an overflow case is given below.

Xj 0 2032 7700.. . 0. (+7700. . .0.232)
Xk 0 2032 7760.. . 0. ($7760.. .0.232)

No alignment is necessary since both exponents are equal. The addi-
tion obviously causes an overflow, as follows.

Xi coef 7700. . . 0.
Xk coef 7760. . . 0.

17660.. . 0.

This is the maximum overflow possible on coefficients in the Add Unit
and is, therefore, detected and corrected before returning the result to the
CPU register Xi. The correction is very simply a right shift of one-bit posi-
tion and an increase by one of the result exponent. This will produce the
following result.

Sum 0 2033 7730.. . 0. (+7730. . . 0 . 233).

Because the exponent is increased during this correction, it is also pos-
sible to “generate” an infinity condition.

For the underflow circumstance, the following example is given. The
case arises only in the use of the Add Unit for double precision solution.
Therefore, the example is a “lower half” result.

82 CENTRAL PROCESSOR FUNCTIONAL UNITS ADD UNIT 83

Xi 0 0040 00 72. (+ 72-2-1737)
Xk 0 0032 00.. . 332. (+332*2-’T45)

The result of the coefficient alignment and sum is accomplished thus.

Xi coef 0 00. . . 072.0. . . . 0
Xkcoef 0 00.. . .03.320.. 0
Sum 0 0 0 . . . 075.320. . 0

In taking the lower half, however, the reduction of the exponent
“underflows” on the 11-bit exponent field.

Octal exponent - 1737 - 60 = -2017

The proper exponent, in the case of an underflow, is all zeroes.

EXPONENT CALCULATION

The Add Unit begins its operation by testing the relationship of the
exponents. The test is conducted to determine which is larger, and then to
produce a shift count for right shifting the number with the smaller exponent.
The total exponent calculations required are:

1. select the coefficient with the smaller exponent for entry to the right shift

2. form an absolute magnitude shift count representing the difference between

3. select the larger exponent as the exponent for &e with upper-half result;
4. subtract 60 (octal) from upper-half exponent for use as lower-half exponent;
5. adjust upper- and lower-half exponents in case of overfiow;
6. form all zeroes exponent for lower half in case of underflow.

network;

exponents;

The first output needed from the exponent subtraction is the choice of
the coefficient to be shifted. Shortly thereafter, the bits of shift count are
required to control the shift network. For these requirements, the exponents
are extracted from the full number and complemented if the number was
negative. The bias is removed by complementing the exponent sign bit.
The two numbers are then placed in a 12-bit subtract network (the exponent
sign bit is copied into the 12th bit). Five cases are of interest.

1. Both exponents positive and equal.
2. Both positive and unequal.
3. Signsunlike.
4. Both negative and unequal.
5. Both negative and equal.

The choice of smaller exponent for signs unlike is, of course, simply the
negative exponent. The case of exponents equal is also no contest; an arbi-
trary choice is satisfactory. The only significant calculation is therefore on
the unequal exponents of like sign.

The larger of two numbers can be determined in a one’s complement
subtract rather easily by examining the end-around-borrow. A network is
built similar to the subtractive network used in the Fixed Add Unit, except
only 12 bits long. The end-around-borrow for this case can be derived as-
suming one exponent is X and the second exponent is the complement of Y.
In other words, the add network forms the sum of X and minus Y.

From the discussion in the section on the Fixed Add Unit, it was seen
that borrows are generated by h y n terms, and passed by %n + Vn terms.
This means that a borrow must be generated but may then be passed to the
left. Looking at this property with regard to the test for the larger expo-
nent, it can be seen that the end-around-borrow is sensitive to the relative
size.

The following examples describe the case.

- Y = I111 100 111 111 1 - 0300
Sum= 111 110 110 111 -0110

In this first example, a borrow is generated in the fifth position from
the left and passed all the way, end-around, finally stopping at the fourth
position from the right.

Reversing the above numbers,

1 c EBB
X = 000 011 000 000 +0300 (Octal)

- Y = 111 110 000 111 -0170
Sum=000 001 001 000 +0110

Duplicating these numbers, except in negative form, the following ex-
amples are given.

1 c BBB
X = 111 110 000 111 -0170(Octal)

- Y = 000 011 000 000 +0300
Sum = 000 001 001 000 +0110

-0300 (Octal)

Sum= 111 110 110 111 -0110

From this exercise it can be seen that exponent Y is always larger, that is
more positive, than exponent X if an end-around-borrow is generated. The
absence of an end-around-borrow indicates either that the two exponents are
equal or that exponent X is larger than exponent Y.

The above can be described in more rigorous terms. An interesting

84 CENTRAL PROCESSOR FUNCTIONAL UNITS ADD UNIT 85

quirk of this logic is that for exponents with unlike signs, the existence of an
end-around-borrow specifies not Y but X as the larger. As a result, the choice
of coefficient to be shifted is found by the exclusive OR of End-Around-
Borrow and Exponent Signs alike.

Two instructions provide for rounding the single precision result of the
floating add unit. If both input operands are normalized, they may be con-
sidered to be larger in absolute magnitude by one-half of the least significant
bit. Since the add network is essentially double length, this may easily be
forced into the network by appending an extra bit to each operand.

However, it is convenient to deal with unnormalized numbers and
especially mixtures of normalized numbers and constants. A constant inte-
ger, for example, should be treated consistently as an integer. Since Add and
Subtract are the only functions sensitive to this, the round mechanism for the
Add Unit is especially built, as follows.

1. A round bit is attached at the right end of both operands if:
a. both operands are normalized, or
b. the operands have unlike signs.

for all other cases.
2. A round bit is attached at the right end of the operand with the larger exponent

RIGHT SHIFT NETWORK

Having picked the coefficient with smaller exponent and determined
the proper shift count, the next major step in the Add Unit.is the alignment
shift. Seven bits of shift count are determined by the exponent calculation.
If the exponent difference is greater than the seven-bit count, .the shifted
coefficient essentially “disappears” to the right of the add network.

The right shift network is a parallel shift network similar to the Shift
Unit. Since it is used strictly for right shifts, however, the design can be
tightened with some speed improvement. A small section of this network is
shown in Figure 53.

In this network, each node is logically active in performing the right
shift. The following derivation shows the method.

F = T + JKS + LMS
G = f + JKS + LMS

Assuming term S is the control term RIGHT SHIFT 2 places, the com-
bination term JK can be said to be shifted right to terms F and G. If no Right
Shift 2 is desired, the combination term LM can be said to be passed through
to terms F and G.

Assuming term T is the control term RIGHT SHIFT 4 places, the term F
will be the pass through term or will be a one during the shift. Similarly, the
term G will be the Right Shift 4 term or will be a one during pass through.
The effect is to combine two terms at the next pair of nodes, such as P and Q.
One input to P and Q is the pass through term, in this case F. The other input

FIGURE 53

to P and Q is the right shift term, similar to term G but displaced “left” of G
by four bit positions.

Note that the entering terms JK and LM can be formed in exactly the
same manner as the entering terms for P and Q. In this case, JK must be two
bit positions “left” of LM in order that S be the control for right shift two
places.

This network is a minimum hardware version of a fully parallel right
shift network and is also a minimum time version. Only seven inverters are
needed for the seven-bit shift count used in the Add Unit. This is shown in
block diagram form in Figure 54 (page 86).

The output of the right shift network is 96 bits plus an additional two
sign bits. The result of the shift involves a right shift of the selected sign bit
on a “background” of sign bits. Sign bits are, therefore, duplicated into each
rank of shift network as needed.

The adder network is a 98-bit parallel version similar to that discussed
in the Fixed Add Unit. A slightly different packaging combination is used,
however, showing the intimacy of the logic and the package once again. In
this case two bits of the adder “entry” and “output” are contained on one
module, as opposed to three bits on the Fixed Add Unit. (See Figure 55.)

The adder “entry” is made up of the coefficient whose exponent was
larger and the output of the shift network. Since the last rank of the shift
network causes a right shift of 64 places, the network output is made up of a

86 CENTRAL PROCESSOR FUNCTIONAL UNITS m m c W Y)

MODULE BOUNDARIES
I t / 1 1 \I - I- I- - - 1 -
I I I
I I I

I I I
I I I

I I I

- -

XI COEFFICIENT

\ TO
ADDER Xk COEFFICIENT

XI EXPONENT

FIGURE 54

sign bit or a bit from the second coefficient, right shifted. These quantities
are combined to form the necessary initial borrow generation and borrow pass
terms. The borrows are then successively combined in sets of three, three,
and six as shown in the following equations.

B1 = XoVo + (Xo + Y0)Bo
B2 = X1Vi + XoVo(X1 + 81) + (Xo + Vo)(X1 + Vi)Bo

= Di. + EiBo,
where D1 - Borrow generation from bit 1,

, El - Borrow pass for bits 0 and 1.

At the next borrow (:layer,” all D and E terms can be grouped in three’s.

B2 = D i + EiBo
B4 = D3 + DIES + EiEiBo
B6 = D5 + D3E5 + DIE& + EiE3E5Bo

= F5 + G580.

Similarly, the next borrow “layer” combines in groups of three.

B6 = F5 + G5Bo
812 = Fi1 + F5Gil + GsGiiBo
Bis = F i 7 + FiiGi7 + F ~ G i l G i i + G5GiiG17Bo

= Ji? 4- KITBO.

Finally, these terms may be grouped in six terms, as follows:

BO = B108 = J107 + JssKi07 + J~IKE~KIOT + J53K71K89K107 + J35K53K~iKsgKio~
+ Ji7K35K53K7iKssKio7.

Bgo = Jss + J~iK89 + J53K7iKas + J35K53K~iKsg + J I ~ K ~ ~ K ~ ~ K ~ I K E ~
+ J I O ~ K I ~ K ~ ~ K ~ ~ K B O .

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

I
I
I
I

I
I
I
I

r -i
I ‘7

I I1
I I1

I : I

I 1
I 1
I I

r ‘
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I

1

FIGURE 55 i!”____ ________ J

88 CENTRAL PROCESSOR FUNCTIONAL UNITS MULTIPLY UNIT 89

B72 = J71 + J53K71 + J35K53K71 + J17K35K53K71 + J I O ~ K I ~ K ~ ~ K ~ ~ K ~ I
+ J s ~ K ~ o ~ K I ~ K ~ ~ K ~ ~ K ~ I

8 5 4 = J53 + J35K53 + Ji~K35K53 + J I O ~ K I ~ K ~ ~ K ~ ~ + J s ~ K I o ~ K I ~ K ~ ~ K ~ ~

+ J ~ I K s ~ K I o ~ K I ~ K ~ ~ K ~ ~ .

B36 = J35 + J17K35 + JIO~KI~K~~ + JE~KIO~KI~K~~ + J~iKsgKio~K17K35

+ J~~KTIKs~KIo~KI~K~~.

Bls = J i 7 + Jio7K17 + JsgKio7Ki7 + J~IKssKIo~KI~ + J53KnKsgKio7Ki~

+ J ~ ~ K ~ ~ K ~ I K s ~ K I o ~ K I ~ .

Note that only the Borrow Generation terms are necessary and that
all six terms involve a maximum of six elements of AND or OR. The network
shown is sufficient for an add of 108 bits. However, the ADD Unit requires
only 96 bits for the double length add, one overflow bit and one sign bit. The
operands are positioned in this adder such that the overflow bit is obtained
“early.” This determination must be made in order to make a corrective
shift of one place and an increase by one of the exponent for the overflow case.

Output of the adder network is sampled directly into the transmitter
circuits, controlled by the Scoreboard. Choice of the upper half or lower half
is made just in advance of the transmitters. The right shift of one place re-
quired after an overflow is also applied to the lower-half coefficient and the
adjustment to the lower-half exponent.

F. MULTIPLY UNIT

Two identical Multiply Units are included in the 6600 CentraI Proces-
sor. While this is small extravagance, the use of multiplication, particularly
in multiple precision computation, represents a large percentage of time.
Each of these units takes 1000 nanoseconds as compared to the 400 nano-
seconds for the Add Unit. Each Multiply Unit can execute the following
instructions.

40-Floating Product of Xi and Xk t o Xi.
41-Rounded Floating Product of Xi and Xk to Xi.
42-Floating Double Precision Product of Xi and Xk to Xi.

As in the Add Unit, both single and double precision results are pro-
duced. These are the upper and lower halves of the product resulting from
the multiplication of two single precision operands. The two halves must be
obtained separately, as in the Add. With two Multiply Units, however, the
two halves can be obtained on two successive minor cycles, a cost of 1000
nanoseconds for the first half and an effective cost of 100 nanoseconds for the
second half. This overlap is easily obtained using two X registers for the
results which are different from the X registers holding the input operands.

The double precision result of floating multiplication shown below is a
double length coefficient with an exponent equal to the sum of the original
exponents.

Xi = 0 2001 0 7 . (+ 7 - 2 l) s
Xk = 0 2002 0 . . . 102.

0 2003 0O 0 . . ,716.
~(+102-22)s
(+716*23)s

The exponent for this product is correct for the binary point a t the far
right as shown. The single precision result, however, takes the upper-half
coefficient. The exponent must be increased by 60 octal in that case. The
results of the above multiplication produce the following single and double
precision results.

Single Xi = 0 2063 0 0. (+ 0.P3)s .
Double Xi = 0 2003 0 . . . 716. (+716-23)8.

It can be seen that the use of unnormalized arithmetic tends to force use
of multiple precision. Double precision hardware is eminently desirable for
unnormalized arithmetic. Normalized arithmetic, on the other hand, re-
mains satisfactory for a single length coefficient. In multiplication of two
normalized numbers, the result may “lose” normalization, as in the following
example.

Xi = 0 2101 460.. . O . (+460.. . O*2101)~
Xk = 0 2020 400.. .O.
Xi = 0 2201 230. . . 0.

(+400.. . 0.220)s
(+230. . . 0.2201)~ Single

If the original operands were normalized, this movement of one bit
position from “normal” is the maximum amount possible in the multiply
operation. Therefore, the Multiply Units are designed to make the correc-
tion to the following normalized result.

Single Xi = 0 2200 460 . . . 0. (+460 . . . 0 - 2200)s.

This exponent is decreased by one along with the single place left shift.
The unit examines the input operands to determine if they are normalized.
The above single place normalization of the result is activated only if both
input operands were normal.

MULTIPLY METHODS

There are a number of schemes for multiplying two binary numbers,
ranging in complexity. The simplest form using a parallel adder requires
that the multiplier and partial product be shifted to the right relative to the
multiplicand. The effect is easily seen in the example on page 90.

90 CENTRAL PROCESSOR FUNCTIONAL UNITS MULTIPLY UNIT 91

Multiplicand 1234
Multiplier 2143
Partial Product 3724
Partial Product 5160
Partial Product 1234
Partial Product 2470
Final Product 2671124

This example is given in octal form but should serve to show the
method. Actually, the binary multiplier performs an addition and a shift
for each bit of multiplier, rather than for each octal digit. In the above
example, this would require twelve additions and shifts.

One scheme for improving the speed of multiplication is to separate the
multiplier in half, performing the partial products simultaneously with a
final addition. The example above is shown below using two halves.

Multiplicand 1234 1234
M u Iti plier 2100 0043
Partial Product 123400 3724
Partial Product 2470000 005 1 60

2613400 ,0055524
0055524 e---

Final Product 2671124

The time taken to accomplish the final product by this second method
can be compared to the simple method as described in the following
equations.

TI = n (A + S),
where TI = multiplication time, simple case,

n = number of bits in multiplier,
A = time for a single addition,
S = time for a single place shift.

TZ = n/2(A + S) + A,
where Tz = multiplication time, two halves.

Carrying this type of scheme to more levels, the “add and shift” times
can be reduced, but with an increase in the final additions to complete the
final merged product. This can be defined in the following way.

T3 = ”(A + S) + (m - 1)A,

where T3 = multiplication time, “many” adders,
m = number of separate adders.

m

Even this can be reduced some by combining the final merge in a “tree”
of additions, as in the following example.

Multiplicand 1234 1234 1234 1234
Multiplier 2000 0100 0040 0003
Partial Product 2470000 ,123400 51600 ,3724

123400/ 3724/
26 13400 55524

55524-
Final Product 2671124

This shows that only two additions, not three as defined by the equation
for Ta, are required for the final product.

Obviously, the examples are showing a diminishing return from this
whole scheme. Figure 56 shows a plot of these schemes for several assumed

RELATIVE
TIME

TO COMPLETE
MULTIPLICATION

2 3 4 5 6
NUMBER OF SEPARATE ADDER/SHIFTERS

FIGURE 56

add and shift times and takes into account “tree” techniques for the final ad-
ditions. This is plotted for a multiplier of 48 bits, as needed for the 6600.

Another scheme for speeding multiplication arises from a technique of
carry propagation called “carry-save.” This technique eliminates the need
for completing the propagation of carries through the adder for each succes-
sive addition. At the completion of the multiplication all unpropagated
carries are taken care of a t once. Because the carry, or borrow, propagation
is a significant part of the total addition time and there are up to 48 additions
to perform, this method can be very effective.

Finally, it is possible to speed multiplication by operating on more than
one bit of multiplier a t a time. This method requires formation of multiples
of the multiplicand. For example, if two multiplier bits are examined a t one
time, i t is necessary to form the multiplicand and the two times and three
times value. Then the correct multiple is added to the partial product de-
pending on the value of the two multiplier bits being examined.

The 6600 Multiply Units use all three methods described above to pro-
vide very high-speed multiplication functions, as follows:

92 CENTRAL PROCESSOR FUNCTIONAL UNITS

1. two halves of the multiplier are handled a t once,
2. two bits of the multiplier are examined in each half.
3. carry-save adders are used.

SEQUENCE

Operands Xi and Xk arrive together a t the input registers of the Multi-
ply Unit. Immediately, operand Xk is shifted left one bit position and
entered, along with the original Xk, in an adder to form 3Xk. See Figure 57.

Xh-

-
FIGURE 57

When these multiples of the multiplicand Xk are available, a sequence
of four identical steps is taken utilizing the two halves of the multiplication.
Each of the four steps accomplishes the multiplication of six bits in each half.
This is diagrammed in Figure 58, showing three “carry-save’’ layers of net-
work followed by a holding register.

REGISTER EZ\
I

x -SELECTED BY 5; 5; $: MULTIPLIER BITS

FIGURE 58

Each carry-save layer forms the sum of the partial product and the
multiplicand “multiple” selected by two bits of the multiplier. The result of
this sum is passed on to the next layer, shifted to the right two bit positions.
The value placed in the holding register a t the end of each step is the partial

MULTIPLY UNIT 93

product of six bits of multiplier and the multiplicand and is shifted right by
six places.

This value is returned to the first carry-save layer for the next identical
step. At the end of four complete steps, there will exist in the two holding
registers the two unmerged halves of the product.

The final product is formed by merging these two halves in a parallel
adder and allowing all “saved” carries to fully propagate. On completion of
this merge operation, the result is transmitted. In case the original operands
were normalized, the result may be transmitted with a normalizing single
place left shift, as needed.

CARRY -SAVE NETWORK

The carry-save network has an interesting and very convenient prop-
erty. In this network, two numbers may be added in such a way as to pro-
duce two answers which fully specify the result but have a form suitable for
temporarily holding cames. The network is actually a three-input, two-
output adder. The two outputs, called pseudo-sum and pseudo-carry, can
be applied to two of the three inputs in a subsequent step, the third input
being a normal number. Carries generated in the repeated use of the net-
work are never “lost.”

Referring to previous derivations of the parallel adders in the Fixed
Add Unit and Add Unit, a derivation of the three-input adder is given below.

It is assumed in this case that the adder network is “additive,” a con-
venience arising from the fact that no subtraction is involved in the Multiply
Unit and also that the operands are forced positive.

CarrySave Pseudo-sum n = (An @ PSn)@Cn
where An = net addend

PSn = pseudo-sum from previous addition
Cn = carry into bit n

Cn = An-1Psn-1 + PCn-1
where E n - 1 = pseudo-carry from previous addition

Carry-Save Pseudo-carry n = (An @ PSnICn.

The effect of the above treatment of carry is seen to be a one-place
carry propagation. In general, the carry is defined as:

The pseudo-carry term is, in effect, a temporary storage of the second
half of this general carry equation. Similarly, the pseudo-sum term is, in
effect, a temporary storage of the sum accounting only for the carry gener-
ated one place to the right and the pseudo-carry from the previous step.

94 CENTRAL PROCESSOR FUNCTIONAL UNITS

It is of some interest to test if carries generated in subsequent additions
can break down this scheme.

For this test the potential conflict between the two terms making up
the carry Cn are suspect. The two terms PSn and PCn, however, can be seen
to be mutually exclusive. It is not possible to generate a carry term Cn with
a value greater than one.

MULTIPLY UNIT 95

The following exercise may aid in explaining a simple addition of three
numbers A, B, and C.

A OOO 000 101 (005)8
B 011 111 100 f374k

A 000 000 101
+B 011 111 100

1-1
Carry

Propagated

SUM 100 000 001
+c 000 110 000

100 110 001

This shows a carry generated in the first sum of A and B propagating to
the most significant bit. Following is the carry-save version of this example.

A 000 000 101
+B 011 111 100

Pseudo-Sum PSI 011 110 001
Pseudo-Carry PC, 0000 010 00

Note here that the pseudo-carry is shown shifted left one place, in posi-
tion for the next addition. Note also that the carry generated has acted on
the pseudo-sum just to the left and is temporarily stored as a pseudo-carry
“passed on’’ to the left, therefore requiring further propagation.

ps1
PCI 0000 010 00

Continuing the carry-save version:

011 110 001

SC 000 110 000
PS2 010 110 001
PC, 0 010 000 00

FINAL SUM 100 110 001

The carry-save mechanism is an extremely simple one, being made up
of Exclusive OR circuits, OR and AND circuits. The DCTL circuit offers a
very convenient Exclusive OR as shown in the carry-save adder of Figure 59.

An example of this convenience is the exclusive OR completing the
solution of pseudo-sum, for simplicity described as Zn @ Cn. The pseudo-

(Am @

-
CARRY LEFT +-- 1

I
I
I
I
I

I I

I I
Am@ PSm)&-&(Am @ PSml Cm

I
L- PSEUDO SUM IN

FIGURE 59

sum is formed using the “inputs” of Zn and Cn to obtain the NOT or comple-
ment of each. The purpose is both total hardware and time through the
network, the second being most important. If, for example, an additional
term were included for %, this additional inverter time would be added to
the network. The maximum number of inverters through the network is
five.

Three such networks can be connected, with appropriate shifts wired in,
such that only fifteen inverters are involved in the long path. This can in-
clude the register, utilizing the clear-set technique for setting the flip-flop.
The result of this configuration is three carry-save additions in one minor
cycle of 100 nanoseconds, the same time needed for a single conventional
parallel addition. This is especially useful for repetitive additions as in
multiplication.

These three carrv-save networks are located on logic modules in a ~ ~~

manner consistent with ground rules of loading and pin limits. The block
diagram of Figure 60 shows this layout on three adjacent logic modules.

The addend input to the carry-save network in the previous discussion
is now identified as Mn, the selected Multiplicand multiple. Control over
the selection of which multiple a t each “layer” is shown at the left of the
Figure. For example, multiplier bits 0 and 1 are translated to select M, the
multiplicand, 2M or 3M, or, of course, zero. The bits of M are entered as
shown. Each layer of this network is required to accomplish a shift t o the
right of the multiplier and partial product relative to the multiplicand. In
this case, it is convenient to hold the partial product and shift the multi-
plicand left a t each layer. The shift is two bit positions since two bits of
multiplication are accomplished in each layer. For purposes of clarity the

I

96 CENTRAL PROCESSOR FUNCTIONAL UNITS MULTIPLY UNIT 97

TO HOLDING
REGISTER

FIGURE 60

-
PSEUDO SUM IN

multiplicand terms are defined as M 11 7, M217, and M317, showing the in-
dependence of each layer in terms of multiple selection but retaining the bit
identification. These three are all bit 17 of the selected multiple.

The result of the total network for one half of the multiply is shown in
Figure 61.

Fifty bits of basic network are required to allow addition of the 3X
multiple of the 48-bit multiplicand. At each layer, two bits of product are
removed to a holding register, a result of the right shift of partial product.
After four iterations through this network, each half of multiplier has pro-
duced 24 bits “off the end” and 48 bits of remaining partial product $‘ . inre

X BY MULTIPLIER

FIGURE 61

one-half of the multiplier is 24 bits in length, the maximum value positive
number contained is 224 - 1. Thus the maximum value in each half of
partial product is as follows:

This requires 72 bits of register.
The “upper half’ partial product overlaps the “lower half” as follows,

with letters X indicating octal digits directly from each network and letters Y
indicating “off the end” digits.

upper
lower . xxxx xxxx xxxx xxxx Y W Y Y W Y

XXXX XXXX XXXX XXXX YYYY YYYY

The merging addition requires an adder with 72 bits of length. Since
the lower Y terms do not influence this merging addition, the pseudo-sum
and pseudo-carry terms, making up this portion of the partial product, can
be summed. For convenience, these are summed six bits a t a time during
the four multiply iteration cycles.

MERGE

At the completion of the four iteration cycles there are four numbers
appearing as outputs of the carry-save networks. These are the pseudo-sum
and pseudo-carry for each half. Aminor modifkition to the basic carry-save
network can be used to convert i t into a full adder. This modification plus
the addition of a small amount of carry propagation network is shown in
Figure 62 (page 98).

The output of the carry network is shown brought into the input nor-
mally used by the multiplicand. The time for complete carry propagation is
approximately one minor cycle.

The above modification is made to the top layer, leaving the lower two
layers untouched. The four values to be merged can then take advantage of
these lower layers. For this purpose, the “lower” half carry-save network is
used for the merge. The pseudo-sum from the “upper” partial product is

98 CENTRAL PROCESSOR FUNCTIONAL UNITS

NORMAL MULTIPLICAND
INPUT TO 3 R D LAYER

ETC. 4

MULTIPLY UNIT 99

ADDITIONAL
CARRY

NETWORK

DISABLE

FIGURE 62

brought into the input normally used by the multiplicand for the bottom
layer. Similarly, the pseudo-carry from the “upper” half partial product is
brought into the middle layer. See Figure 63. The carry from the lower 24
bits of product is introduced into the long carry network as shown.

i SUM
I #

1

“LONG”
CARRY

0. X.ZX, 3X OR PSEUDO

.-t_t;””l
FIGURE 63

The lower half network is, of course, too small to complete the 96 bits of
final product. An additional adder for these extra bits is included.

EXPONENT

Each Multiply Unit contains logic for the exponent calculation needed.
Two additions and one subtraction are required of this logic, as follows.

1. Sum of Xi exponent and Xk exponent used for the double precision, or lower,

2. Sum of 1 above and 4810(608) used for the single precision, or upper, product.
3. Difference of 1. or 2. above and one used when single place left shift is needed to

product.

normalize result.

Figure 64 on page 100 is descriptive of this logic.
Operands Xj and Xk are forced positive on entry. This places the re-

spective exponents of Xj and Xk in the input registers in true form. Since
these input registers are used by both Multiply Units, they are emptied
within one minor cycle. The two sums described above are formed, and one
is selected by the function currently being executed in the unit. The decre-
ment by one is performed and held until the final coefficient product is com-
pleted. As described previously, the h a l result will be normalized if the
input operands were normal. This means a left shift of one place for the co-
efficient and a reduction by one of the final exponent. The test is made near
the end of the multiply sequence. The proper one out of four possibilities is
picked for the coefficient result, together with the proper one out of two ex-
ponents. The results are complemented if the original signs were unlike.
The four possible paths for the coefficient are:

Direct output upper
Direct output lower
Left shift output upper
Left shift output lower

Tests of the end-case conditions for the exponents are also made. I t is pos-
sible to generate exponent overflow, infinity, indefinite, and underflow in this
unit.

ROUND

Rounding is provided in each Multiply Unit for the Single Precision, or
upper, result. Determination of the round condition is made on the lower
product coefficient. Simply stated, if the lower coefficient of the product is
equal to or greater than one half the upper, a round-off is required.

Truncation of the 96-bit product coefficient has the effect of rounding
downward or toward zero. This is an attribute of the one’s complement
number representation. Of course, because both operands are initially forced
positive, it would also hold true of two’s complement representation as well.

A common but time-consuming method of rounding is the addition of
the number one-half to the upper product integer, and allow carries to propa-
gate into the upper product. The effect is to increase the upper product by
one for lower half products equal to, or greater than, one-half relative to the
upper. This kind of rounding requires a full addition time.

DIVIDE UNIT 101

f

FIGURE 64

Rounding in the Multiply Unit is accomplished without additional time.
The technique used is to preset the adder network such that the preset value
will be added to the upper product. It is assumed that rounding is desired
primarily in conjunction with normalized numbers. Approximately half the
products of normalized numbers will require a single-place left shift to
normalize the result. A preset value for round receives the effect of such a
shift. Therefore, the preset value chosen is the number one-fourth relative
to the integer upper product. As a result, the following round conditions
apply *

1. Half of all products which require a left shift will be rounded up by one. The

2. One quarter of all products which require no left shift will be rounded up by
other half will round down by truncation.

one. The other three quarters will round down by truncation.

The net effect of this pre-round technique is to bias the round slightly
toward zero. This deviation is considered satisfactory and reasonable be-
came of the 48-bit coefficient length and the ability to perform double-pre-
cision multiplication.

G. DIVIDE UNIT

The slowest of the Central Processor functional units is the Divide
Unit. Floating point division requires 2900 nanoseconds, while Population
Count, a function also assigned to this unit, is accomplished in 800 nanosec-
onds. The three instructions executed in the Divide Unit are:

44 Floating Divide Xj by Xk to Xi,

45 Round Floating Divide Xi by Xk to Xi,

47 Count the number of ones in Xk to Xi,

In the design of this unit, one humorous incident stands out and should
be related. The instruction codes shown above represent a very simple and
convenient combination if code 46 is included. However, code 46 was se-
lected as the PASS instruction. As the reader has perhaps already sus-
pected, the PASS instruction design ended up triggering a complete Divide
Sequence! Needless to say, this minor embarrassment was corrected.

There are very few really effective strategies available for the design of
divide logic. The basic method operates much like the pencil and paper
method; the successive subtraction of the divisor from the dividend followed
by a left shift of the dividend and quotient relative to the divisor.

The following example illustrates the method using four octal digits to
represent the divisor coefficient and the dividend coefficient.

102 CENTRAL PROCESSOR FUNCTIONAL UNITS

Xj = 7604
Xk = 5213

1.3613
Xj/Xk = 5213 7604.0000

5213

2371 0
1764 1

-

404 70
375 02

7 660
5 213

2 4450
17641

4607

While an octal method could be used, the Divide Unit instead forms
only two bits of Quotient in one step. To do even this, three subtraction net-
works are required as shown in Figure 65.

The operands are initially forced “positive.” Three values are simul-
taneously subtracted from the partial dividend. These values are the divisor

I
TIMING CHAIN I

FIGURE 65

I

1 DIVIDE UNIT 103

and its second and third multiple, a design condition rather similar to the
Multiply Unit. Because the operands are initially forced positive, the
dividend is positive and the divisor is negative in preparation for the
subtraction.

The Divide Unit design assumes that normalized arithmetic is being
used or that other program techniques are applied to protect against divide
overflow. One technique is to normalize a t least the divisor. Methods of
unnormalized arithmetic, such as significance arithmetic, can also be used.
In any event, the unit corrects only for a single-bit overflow such as the case
cited above.

Following this example through, multiples of the divisor are first
formed.

Dividend Divisor

Xk = 5213 (Octal) Xi = 7604
2Xk = 12426
3Xk = 17641

All three multiples of the divisor are simultaneously subtracted from
the dividend. The largest of the three which can successfully be subtracted
without changing the sign of the resultant partial dividend will define the
quotient bits for this iteration. The fhst iteration defines a quotient of
01.XXX.. . X binary since only Xk can be subtracted. The resultant partial
dividend is also picked from the first subtractor and entered into all three
registers associated with the three subtractor networks.

For the second iteration, the partial dividend is shifted left two bit posi-
tions. This is shown as follows.

Dividend 7604 Octal
Divisor 1X -5213

LJI I
---- Sniirea ieir i birs = I I IW

Trial subtraction for the second iteration again finds the largest accept-
able subtraction of Xk. The following table is a consolidation of all seven
iterations showing the partial dividend after the successful subtraction, un-
shifted and shifted, as well as the quotient.

Step
Partial Part i a I

Div. Shifted Div. Unshifted Quotient (Binary)
-

1
2
3
4
5
6
7

7604 2371
11744 4531
22544 2703
13414 766
3730 3730

17540 51 12
24450 4607

0.1.xxxxxxxxxxxx -
01 .~xxxxxxxxxx
01.01lJxxxxxxxx
01.0111gxxxxxx
01.01 11 10ocJxxxx
0 1.01 1 1 1 ooogxx
01.01~1190010~

104 CENTRAL PROCESSOR FUNCTIONAL UNITS
INCREMENT UNITS 105

The quotient is therefore 1.3613 octal which is a single-place overflow.
This is corrected by a single right shift, producing the coefficient result .5705
octal. The exponent of the result is increased by one in conjunction with this
shift.

Because coefficients are really 48 bits long, not 12, the above procedure
requires twenty-five subtractions and twenty-four shifts. Each subtraction
takes one minor cycle since the borrows generated during each subtraction
must propagate to the sign bit in order to determine the success of each
subtraction.

Because the signs of the numbers are known, i t is a considerable, in fact,
critical advantage to look at the end-around-borrow, EAB, rather than the
sign. With a 48-bit subtract network, EAEi can be determined in fewer in-
verters than the sign. To pick the correct network output requires combin-
ing the EAB signals from all three networks as shown in Figure 66.

*SELECT DIVIDEND - 3Xk

SET Q = 3 \
2Xk EAB

SELECT DIVIDEND - ZXk

SET Q = Z

Xk EAB

SELECT DIVIDEND - Xk

b-u- SELECT DIVIDEND

SET Q = 0
FIGURE 66

This logic is a direct result of the relationship of end-around-borrow to
the relative sizes of the partial dividends and the particular subtractor.
There will be an EAB only if the applicable divisor multiple is greater than
the dividend.

EXPONENT

A series of add networks are connected in a manner similar to the Multi-
ply Unit in order to perform the exponent calculation. The true exponents
are extracted from the original operands Xj and Xk. The exponent of the
divisor Xk is subtracted from the exponent of the dividend Xi.

Because the result of the division is essentially a fraction as shown in the
example, a reduction in the exponent is necessary to conform to the correct
positioning of the binary point. This reduction of 4810, or 60 octal, is accom-
plished by a second add network. Finally, the overflow correction requires
an increase of the resultant exponent by one.

ROUND

To counteract the effect of truncation of the quotient, the Divide Unit
includes the ability to round-off. In this Unit, as in Multiply and Add Units,
the round is achieved with no increase in time. A round value is preset into
the dividend in order to effect an increase of the final quotient by one-half.
As in the other units, the overflow and normalize adjustments tend to affect
this type of round.

In the Divide Unit, about sfty per cent of the quotients resulting from
using normalized dividend and divisor require the overflow right shift adjust-
ment. For the half requiring no shift adjustment, the preset round value of
one-third relative to the integer dividend has several interesting properties.
This value, if essentially added to the original dividend, is also divided by the
divisor. If the divisor is normalized, the possible range is 1/24!” to Just less
than 2”. The effect on the round value is to give it a range from one-third to
two-thirds, on completion of the division. For the no-shift cases, this centers
around the desired value one-half. Again, as in Multiply, the right shift
cases tend to bias the round-off slightly toward zero.

POPULATION COUNT

The count of the number of ones in a sixty-bit word is accomplished in
the Divide Unit in 800 nanoseconds. The logic of this “population” counter
is essentially a tree of adders, as can be seen in Figure 67 (page 106).

A first column of circuits is constructed to form three-bit quantities of
the number of ones in four-bit groups. There are, as a result, fifteen octal
quantities to be added. Taken two a t a time, four add cycles are needed.
The logic of a single four-bit group converted to a three-bit binary number is
an interesting combination in Figure 68 (pages 108-109).

The four bits generate two Exclusive OR terms which combine in an-
other Exclusive OR to establish the least significant bit of the count value.
The remainder of the logic in the figure is self-explanatory.

H. INCREMENT UNITS

Two Increment functional units are included in the Central Processor.
Each unit is capable of performing -. fixed point addition and subtraction on
18-bit b e d point numbers. ‘l‘hese operatlons are needed h:

106 CENTRAL PROCESSOR FUNCTIONAL UNITS INCREMENT UNITS 107

FUNCTION TIME IN NANOSECONDS

I I 56-59

52-55

I 48-5t 1 44-47

i 40-43

i 36-39

I 32-35

1 28-31

I 24-27
I

I 20-23 I 16-t9

I 12-15

I 8-14
I
I 4-7

I 0-3
I I I I I

FIGURE 67

Indexing - Reading and storing arithmetic operands
Conditional branch tests.

A set of instructions in the Central Processor is devoted to preparing,
hcrementing, and moddyng the addresses for reading and storing operands.
The effect of these instructions is to generate a new address in one of the eight
A registers and, at the same time, to initiate a storage reference a t the new
address. These instructions are listed below.

50 Sum of Aj and K to Ak 30 bits
51 Sum of Bj and K to Ai 30 bits
52 Sum of Xj and K to Ai 30 bits
53 Sum of Xj and Bk to Ai 15 bits
54 Sum of Aj and Bk to Ai 15 bits
55 Difference of Aj and Bk to Ai 15 bits
56 Sum of Bj and Bk to Ai 15 bits
57 Difference of Bj and Bk to Ai 15 bits

Note that the first three are the long format of thirty bits in order to
describe an eighteen-bit quantity K. Shown in Figure 5 of Chapter I1 is the
relationship of the A registers to the X registers. Specific read trunks are
provided from central nt’nrage t.o rPgiiterS X I thmngh XE;. Specific store

trunks are provided from registers X6 and X7 to central storage. Whenever
a result of one of the above instructions enters one of these seven A registers,
a storage reference is initiated causing a read or a store to or from the specific
“partner” x register. Registers A 0 and XO do not participate in central stor-
age operations but are reserved for Extended Core Storage usage.

Another set of instructions is devoted to fixed point calculation for in-
dexing, manipulation of constants, and assorted other uses. These are
grouped such as to produce changes in the B Increment registers and is the X
operand registers, as follows.

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

Sum of Aj and K to Bi
Sum of Bj and K to Bi
Sum of Xj and K to Bi
Sum of Xj and Bk to Bi
Sum of Aj and Bk to Bi
Difference of Aj and Bk to Bi
Sum of Bj and Bk to Bi
Difference of Bj and Bk to Bi

Sum of Aj and K to Xi
Sum of Bj and K to Xi
Sum of Xj and K to Xi
Sum of Xj and Bk to Xi
Sum of Aj and Bk to Xi
Difference of Aj and Bk to Xi
Sum of Bj and Bk to Xi
Difference of Bj and Bk to Xi

Note that the three sets of instructions differ only in the specification of
the result register set X, B, or A. Although many more combinations of addi-

implemented in the design and are considered to be the most useful.
The Increment Units are also utilized as “partner” units to the Branch

Unit for conditional jumps, as described in the following instructions. Again,
as in the Fixed Add Unit, the Increment Unit is begun simultaneously with
the Branch Unit, as a “partner.” The Increment Unit accomplishes the
conditional tests while the Branch Unit is preparing the destination address.

.. 1 iiuu mid suLilaciiun are pussiule uii ihe regisiem, u d y ihe fuieguiiig welt:

02 GotoK + Bi 30 bits

04 Go to K if Bi = Bj 30 bits
05 Go to K if Bi # Bj 30 bits
06 Go to K if Bi 2 Bj 30 bits
07 Go to K if Bi < Bj 30 bits

The first jump instruction above, 02, is an unconditional jump to loca-
tion K plus the contents of register Bi. In this case, the Increment Unit per-
form the 1Sbit addition needed to determine the jump destination.

108 CENTRAL PROCESSOR FUNCTIONAL UNITS I

INCREMENT UNITS 109

FROM

FEEDER REGISTER

A A A A

ONES UXlNTER
BITS 56-59 I

52 - 55 Hi
4R- 51 Lux

(GO MULT 1 + 2 EXP)

COEFFICIENT

COUNT
CONTROL CLEAR

GATE OUT +1.2 v

44-47
40-43
36 - 39

32-35

24-27
20-23
16-19

12 - 15

I 4-7 H021
31TS 0 - 3 no1

s=o----l :* 2:

G

I I

ro x,

FIGURE 68

1 10 CENTRAL PROCESSOR FUNCTIONAL UNITS BRANCH UNIT 111

The other four instructions, 04 through 07, are conditional jumps in
which the Increment Unit performs the test on the specified B registers. In
these five cases, the Increment Unit selected does not return a result to the
registers. The result is transferred instead to the Control System of the Cen-
tral Processor, as will be described in the following section on the Branch
Unit.

The Increment Units are shown in Figure 69. The two Increment Units

REQ. REL I

I /ENTER K, INCR I - I
FIGGEE by increment tunctional units-block diagram.

share, for convenience, a common add network. The identity of each unit is
found in the result register. These units retain the result in temporary stor-
age in the result registers until called for by the control system.

In those cases in which the K field from the instruction is used as one of
the operands, this quantity is temporarily loaded into the appropriate result
register. As will be described later, the other operand is brought into the
unit, and the K entry is returned to the input a t the same time.

STORAGE REFERENCES

In the set of instructions which specify a new address in one of the A
address registers, there are two outputs of the selected Increment Unit. One

of these outputs is connected to the specified A register, just as a normal func-
tional unit output. The other is taken directly to the Central Storage Stunt
Box. This technique obviously reduces the storage access time for a storage
reference. A somewhat simpler form of design could have been to wait for
the new address to be sent to the appropriate Address register and then to
the Storage Stunt Box. This would have increased access time by two or
more minor cycles.

The “computed GO TO” jump, 02, also requires the result of the Incre-
ment Unit add network. In this case, the destination value is sent to the
Central Storage Stunt Box and to the Program Address Register P.

In some circumstances, the Increment adder network must hold the
results temporarily because of a “backlog” of references entering the Central
Storage Stunt Box. This is a rare event; thus the design tends to favor the
“no-conflict’’ smooth-flow case. This portion of the control system is compli-
cated, however, by a focusing of the Branch testing, indexing, and storage ad-
dress manipulation activities in the Increment Units.

INCREMENT ADDITION

The fixed point numbers held in the A address registers and B incre-
ment registers are represented in one’s complement form. Addition is
accomplished in much the same manner as in the Fixed Add Unit and in the
Add Unit. Operands entering the Increment Units are left in original form,
regardless of sign.

In the case of operands from the X operand registers, which are of sixty-
bit length, the sign is taken to be the 18th bit from the low or right end. Re-
sults-going to the X registers from the Increment Unit produce sign extension
in the selected X register.

1. BRANCH UNIT

The Branch Unit is unique in several ways relative to the other func-
tional units.

It uses “partner” units for conditional tests.
It halts any further instruction issuing until the Branch is complete.
The only result of the unit is a possible change in Program Address Register p,
and a new program path, or a PASS.

The following instructions are executed by the Branch Unit.

1 12 CENTRAL PROCESSOR FUNCTIONAL UNITS
BRANCH UNIT 113

010 Return Jump to K

02 Go to K plus Bi PARTNER-INCREMENT UNIT

030 Go to K if Xj = O PARTNER.FIXED ADD UNIT
031
032
033
034
035
036
037

Go to K if Xj # 0
Go to K if Xj is Positive
Go to K if Xj is Negative
Go to K if Xi is In Range
Go to K if Xj is Out of Range
Go to K i f Xj is Definite
Go to K if Xi is Indefinite

04
05
06
07

Go to K if Bi = Bj
Go to K if Bi # Bj
Go to K if Bi 2 Bj
Go to K if Bi < Bj

PARTNER-INCREMENT UNIT

In executing these Branch instructions, four major steps are taken.

Step 1 Determination of the condition specified in the conditional Branch in-
structions. This step is accomplished in the Partner Unit.

Step 2 Calculating the jump address.
Step 3 Determination of jumps to the Instruction Stack (Chapter VI).
Step 4 Initiating Storage reference for new instruction if not in the Instruction

Stack.

PARTNER UNIT

In the conditional Branch instructions and in the 02 instruction, the
Partner Unit must be free to proceed before the instruction can begin. Step
1, as described above, is executed a t the same time as Step 2. This allows the
c o n d ~ t k ~ test zx! thc $&ixp ad&-i-ss &&iiion to be completed in the mini-
mum time. If the condition is met, the new program address is transferred to
the program address register P. If the condition is not met, the program con-
tinues to the next instruction.

- .

INSTRUCTION STACK

Only the conditional Branch instructions, 03 through 07, are allowed to
jump within the instruction stack. Eight words may be held in the instruc-
tion stack. These are loaded one at a time during the normal course of in-
struction fetch. Each new instruction word is entered a t the bottom causing
the older words to move up. Whenever a Branch instruction causw a jump
out of the stack, all of the instruction words accumulated in the stack are
declared void. New instruction words are then brought in as described in
Chapter VI.

Two values are maintained in the control system for the stack, a depth

(D) and locator (L). The depth (D) is a measure of the valid instructions in the
stack. This means that the value of D is set to zero after any Branch out of
the stack and is increased by one for every new instruction word brought in.
When the stack is full, D remains equal to seven. The locator L is used to
specify the location in the stack of the instruction word currently in use.
These values are all that are necessary to allow Step 3 above to be’ accom-
plished. The test is made in the following manner.

1. The program address P is subtracted from the Branch destination K.
2. For values of K-P ranging from minus 7 to plus 7, a further test is made.
3. The value of K-P ranging from minus 7 to plus 7 is compared with the locator L

and depth D.

It should be clear from this test that the Branch within the instruction
stack can be forward or backward. Note also that the 6600 Branch instruc-
tions only allow for jumps to full word boundaries.

For jumps within the stack, no storage reference is initiated in order to
preserve the current stack contents. Also, the initiation of new instructions
will only occur if the bottom stack register supplies the instruction (Chapter
VI). Therefore, program loops may be held in the stack in various forms.

Whether a “loop” within the stack or a jump out of the stack is per-
formed, the new program address is set in the program address register P.
This means that the instruction word defined by P can “float” up in the stack,
only requiring the locator L for identification.

RETURN JUMP

The Return Jump instruction, OlOjk, is unique in that two storage ref-
erences are executed. The Grst stores an unconditional jump (0400) and the
clAmr+ yl.LJre= S<i-jG&

reference causes an instruction fetch from address K + 1. The effect of the
Return Jump is shown in the diagram of Figure 70.

“”2 ! D ; 1) ka $kc q.pc; L& ef ;&&-= K.

0100 K INtSERTED

- I 0200 i - 1 1 EXIT

FIGURE 70

Return Jump “inserts” in exit unconditional Branch which is used by
the subroutine to return to the originating routine. Since this “insertion”
does not modify the lower half of the word a t address K, this lower half can
also be 11s~d hy thp &gina_ting ~QI&E t~ fi;.thpr j~!p&ib the R r n ~ h S Q ~ K C ~ .

114 CENTRAL PROCESSOR FUNCTIONAL UNITS ECS COUPLER-CONTROLLER 1 15

In any case, this instruction must be used with care since the return address
left in address K can be destroyed by re-use of the subroutine after an un-
expected interrupt. Although the Return Jump is a very useful and conven-
ient instruction, it represents the type of program “self-modification” which
requires careful handling.

Note: To such a pious statement as the preceding one, there is the
temptation to claim foul. For example, what does “careful handling” mean?
Or, alternatively, should it be used at all? The reader must simply determine
the conditions which hold for the case in question. If a subroutine is to be
used by many programs under interruption conditions, it is vulnerable.

The Return Jump instruction is not allowed to jump to the instruction
stack because it must leave the return address in storage. The instruction
stack does not return, of course, to central storage.

The steps involved in the Return Jump are as follows.

1. Read Return Jump.
2. Stop Instruction Issue.
3. Transfer P (contains P + 1) to S Register.
4. Transfer R (jump address K) to P.
5. Transfer P to Stunt Box register MO.
6. Transfer S to Storage Write Distributor and Force 0400 in Upper Bits of

7. Increment P (Jump Addres plus 1) and Transfer to Stunt Box Register MO.
8. Transfer MO and Stunt Box Tag for “Read Next Instruction” to Stunt Box

9. Wait for Accept to Proceed.

Distributor.

Hopper.

J. ECS COUPLER-CONTROLLER

An optional addition to the 6600 computer system, the Extended Core
Storage Unit, requires the equivalent of a CPU functional unit. This is
called the ECS Coupler. Two CPU instructions are issued to the ECS Cou-
pler, described below.

O l l j k
012jk

Read a block of length (Bj) + K words from ECS t o Central Storage.
Store a block of length (Bj) + K words from Central Storage to ECS.

The starting address of Central Storage is defined by the contents of
register AO. The absolute address in Central Storage is found by the sum of
(AO) and RA. The starting address of Extended Core Storage is defined by
the contents of register XO. The absolute address in ECS is found by the sum
of (XO) and RAecs.

A length test is made a t the beginning of the block transfer to determine
if the field length for Central Storage FL or the field length for ECS FLecs will
be exceeded by the transfer. If so, the instruction is aborted as described
later.

Similar to the BRANCH Unit, all instruction “issues” are halted during
an ECS execution. The reason for this is that the block transfer between
Central Storage and ECS uses the Central Storage trunk system to full ca-
pacity in one direction of data flow.

Control is given to the ECS Coupler after the instruction is issued. Two
restart possibilities exist. These are triggered by the End of Transfer signal
or the Abort signal. Typically, the instruction is located in the upper, or left
half, portion of the instruction word. On an End of Transfer signal, the re-
mainder of the instruction word is ignored. On an Abort signal, the next in-
struction is taken from the lower, or right half, of the instruction word. This
allows for separate treatment of the normal transfer and the aborted
transfer.

Initial data entered into the ECS Coupler are the K field of the instruc-
tion, the contents of registers Bj, A0 and XO. The block transfer length is
first determined by the sum (Bj) + K. Following, the test is made against
FL and FLecs, shown below.

A 0 + (Bj) + K.FL
XO + (Bj) + K-FLecs

tests for Central Storage.
tests for ECS.

After the transfer length test is made, the ECS Coupler controls the
block transfer, acting as the control interface between Central Storage and
Extended Core Storage.

CONTROLLER

Extended Core Storage uses a “super-word,” or sword, of 480 bits, with
eight bits of parity. Therefore, addresses offered to the controller are re-
quired for every eighth Central Storage word. During a block transfer, the

thr cG.;ect sfi-L,;t -;;ord bGGG&-y,
and subsequent addresses a t sword boundaries.

The ECS Controller accepts addresses on a sword basis. By this means,
each group of eight Central Storage words is transferred through the ECS
Controller. On Read transfers the initial address is, in general, one of the
eight 60-bit words within a sword, as shown in Figure 40 in Chapter IV.

The controller separates the sword address and word pointer for the
READ operation. After the read reference is initiated and the sword is read
into the Bank Register, the word pointer controls the beginning of the block
transfer. Sixty-bit words are transferred, beginning at the word pointer loca-
tion, and continue a t minor cycle intervals to the end of the sword. After
the first address, this is an eight-word cycle. In Figure 41 in Chapter Iv is
shown a series of eight-word cycles in a typical transfer.

This diagram illustrates the fixed time intervals associated with each
sword address. The important thing is that each eight-word transfer is con-
ducted a t minor cycle intervals. It is possible to break in a t sword boundaries
to allow PPU references to Central Storage or to allow other acces channels

ECC +lp!eF dzy-,-z ;-. ici..;!

1 16 CENTRAL PROCESSOR FUNCTIONAL, UNITS

to reference ECS. Without such interruptions, a block transfer can proceed
without any break, as shown. With any interruption, a penalty is paid in
the control system and in the conflict of usage of ECS banks or Central Stor-
age banks.

INTERRUPT

The ECS Coupler delivers sword addresses to the ECS Controllerunder
the constraints mentioned above. Whenever a PPU reference to Central
Storage is allowed to interrupt, a short restart time penalty is exacted. An-
other, more serious interruption can occur in the CPU. This is the appear-
ance of an Exchange Jump. The effect of such a signal is to cause an abort of
the entire transfer. It is assumed that the entire block transfer will be re-
initiated in a later return to the program which was interrupted.

The ECS Coupler generates an address for every 60-bit Central Storage
word in the block transfer. These addresses are entered in the Stunt Box
mechanism with one assumption. This assumption is that the references will
proceed in order with no conflict. This is insured because the beginning of
operation is not allowed until all other Central Storage references are
completed.

STORE

Store references are specially handled in the ECS Controller. A fixed
time interval is required for words entering the ECS Controller to be stored.
Once this fixed interval is over, no entries are honored. The final sword in a
block transfer is handled satisfactorily in this manner since the words to be
stored are delivered to the ECS Controller in consecutive minor cycles, until

time interval completes the operation correctly.
the hlnrk is mmpletpd If the hl&lr_ & s h c ~ ef 2 --.y.’ hc-zdzy, t he &2d

CENTRAL PROCESSOR
CONTROL

VI

In the 6600 Computer, perhaps even more than in any previous com-
puter, the control system is the difference. The essential premise of the Cen-
tral Processor is “functional parallelism.” Chapter V has dealt with the
functional units. This Chapter will show the methods employed to control
these units in parallel.

It is well to repeat the essentials of the “functional parallelism” of the
o o w umipuier. inese are:

Separate functional units,
Registers for operands, indexes, and addresses,
Instruction Stack,
Reservation control, or Scoreboard.

,.,.-a ,Y m.

This last is the major part of the control system. There are, of course,
other elements of the control system which are also essential. For example,
the operating system for the 6600 provides overall control of job scheduling,
allocation of CPU and storage, and the control of Input and Output.

A. EXCHANGE JUMP

The Central Processor is started, stopped, or otherwise interrupted by
means of the Exchange Jump. This operation may be initiated by a Peri-
pheral Processor or hy the Central Processor. To initiate the operation. a

EXCHANGE JUMP 119 118 CENTRAL PROCESSOR CONTROL

PPU executes the Exchange Jump referring to a Central Storage location as
shown in Figure 71.

This location is the fist of 16 words called the ‘‘exchange package.”
seen, the contents of the 24 Central Processor Registers are copied into this

dress and field length entries. In short, the entire “state” of the CPU is reset
by the Exchange Jump.

As a hardware option the Central Processor can also initiate and then
execute an Exchange Jump. Since this is a conceptually different situation
from a PPU interruption, there are several changes from the simple EX-

LOCATION N
EXCHANGE PACKAGE

ri
FIGURE 71

package, together with other essential data including the program address,
relative address and field length for Central Storage and ECS, error mode,
and a pointer where applicable. The effect of executing the Exchange Jump
instruction in the PPU is simply a pass. The effect, however, in the CPU is a
series of the following steps.

1. The CPU issues instructions up to, but not including, the next one located first
in an instruction word.

2. All issued instructions are nllnwd tn R?I? tc %r?p!et;.nr..
3. The CPU registers are then interchanged with the data stored in the exchange

4. The CPU is restarted at the location specified by the new contents of program
package.

address register, P.

These steps are completed in an uninterruptable sequence, taking a
variable time for steps 1 and 2 and just over two microseconds for steps 3 and
4. Average interruption time is in the range of three to five microseconds.

The effect of step 1 above is su5cient to cover instruction combinations
including Branches and also provides a clean starting point for restart a t a
later time. Step 2 insures that the integrity of the interrupted program is
maintained. Step 3 is a special privilege provided by the Central Storage
system, which allows readout of stored data and the write of new data in a
single storage reference. Because there are only sixteen words to be inter-
changed, the interleaved bank structure of Central Storage is used efficiently.
Finally, the new program is begun at the new location at (P) using the newly
exchanged drrtn. N& thst the Exchange J’;?;i; ~TG&GC= idiitive ad-

change Jump.
First, there is defined a “monitor” state in which the Central Processor

may initiate jobs or tasks in a direct manner. The exchange package, in this
case, is defined by the location (Bj) + K in instruction 013jk. The CPU may
thus prepare a new task in a manner similar to the PPU, then initiate it.
The CPU also inserts in the exchange package during the execution of the
monitor program, a pointer to the “return” exchange package on completion
or interruption of the task. Therefore, when the task signals completion by
executing instruction 013jk, the designators j and k are ignored. Instead,
the Exchange Jump is executed using the monitor address pointer to specify

Tranzistor “chip” showing surface metal pattern and connectlng leaas.

120 CENTRAL PROCESSOR CONTROL INSTRUCTION FETCH 12 1

the locatim of the exchange package. The intended effect is to alternate
between monitor and task. Note: task is used here to define programs which
require operating system assistance to initiate. A task may be a portion of
a user program, a “public” library program, or the operating system itself.
A task may be interrupted in some “time slicing” manner.

The PPU is also able, within the same option, to control Exchange
Jumps in the manner described above. For this purpose a conditional Ex-
change Jump may be executed. The effect is to cause a “return” to the
monitor if‘the CPU is not already operating in the monitor state. If the CPU
is operating in the monitor state, no action is taken. The operating system
software in this case provides for a confirmation by the initiating PPU, using
a message area in Central Storage. The PPU, by program, repeats the con-
ditional Exchange Jump until successful.

The optional Exchange Jumps described above are especially useful
and interesting in conjunction with Extended Core Storage and the com-
patible 6500 Computer which contains two smaller CPU’s. In the latter
case, each CPU can interrupt the other and itself in the manner described.
The advantages of two CPU’s, even though slower than a 6600 CPU, are
particularly sensitive to the amount of storage and to the ability of each
CPU to initiate new tasks. The optional Exchange Jumps are most useful in
this case.

The Exchange Jump operation is a key mechnism of the 6600 operat-
ing system. With it, a PPU may act as system monitor, scheduling and inter-
rupting the CPU. Similarly, with the hardware option the CPU can take
ouer the Central portion of the system monitor while still deferring Input-
Output and external interrupt h a d i n g to the PPu’s.

B. INSTRUCTION FETCH

Following any Exchange Jump, the new contents of the program ad-
drew, register P are used to locate the first instruction word. This address is
sent to the Central Storage Stunt Box modified by the new relative address,
(RA) + (P). The program address is also tested against the Central Storage
Field Length FL. If the program address exceeds the field length, all zeroes
are read from Central Storage. If the error mode is set to abort on such a
fault, the program branches to Relative Address RA and halts indicating the
error. If the error mode is not set, the new instruction of all zeroes is “ex-
ecuted,” producing a halt. Note that the error mode conditions cover the
detection of infinity and indefinite in floating point operands as well as the
storage reference out of bounds described here.

Assuming a normal program start, the first instruction word enters a
buffer register located a t the bottom of the instruction stack, briefly discussed
in Chapter V. This is shown in Figure 72.

I’
I0

INPUT REGISTER -
CENTRAL MEMORY

FIGURE 72 Instruction stack.

Immediately on entering the bottom register, the first, or left-most,
instruction is transferred to a series of instruction registers, UO through U2.
As this transfer occurs, another instruction fetch is initiated. The condition
for this step is simply that the left-most instruction is being transferred for
execution. In later discussion it should be clear how this satisfies all in-
struction fetch conditions to Central Storage except the start after Exchange
Jump.

Instruction words are made up of four “parcels” of a t een bits each.
The first instruction in a word uses parcel 0 for short format or parcel 0 and 1
for long format, as shown in Figure 73.

PARCEL 3 (PK.3)
w

PARCEL 2 (PK.2).
PARCEL i (PK.1):

PARCEL 0 (PK = 0,:

TN ,r 259 20

FIGURE 73 Instruction word parcels.

In order to cover the long format, thirty bits are extracted from the
instruction word on every minor cycle. For’short formats the second half
is ignored. For long formats an extra minor cycle is spent skipping the sec-
ond half.

Instructions are loaded in register U1 by two paths as shown in
Figure 74 (page 122).

From odd levels of the instruction stack instructions enter U1 directly.
From even levels of the instruction stack instructions enter U1 via register
UO. This form of logic is a result of the instruction stack data movement.
Instructions are entered at the bottom of the stack following a shift maneu-
ver in the stack. Whenever a new instruction fetch is initiated, the contents
of the stack are “inched” upward, one register every half minor cycle. AS a

122 CENTRAL PROCESSOR CONTROL
INSTRUCTION ISSUE 123

LOOP + 2. Instruction word C contains a branch instruction, GO TO LOOP
I F . . . , which causes control to transfer back to instruction word A if the
condition is satisfied. Instruction fetch of each of these instructions is ini-
tially accomplished from Central Storage. In fact, because the first pass
through this program “loop” requires that the first instruction contained in
instruction word C be transferred to U2, an additional fetch is initiated.
The result is that an additional instruction word D is entered in the lowest
level of the instruction stack before the Branch is taken. After word D is
entered into the stack, the “loop” can be held without further entries. This
could be called a form of “look behind.”

Instruction fetch and execution from the instruction stack is faster than
from Central Storage for three reasons.

- Access time to the instruction stack is short.
Test of Central Storage busy adds time, as does the summation of relative

Use of the instruction stack removes a Central Storage reference.
address RA with the Central Storage address.

tion

124 CENTRAL PROCESSOR CONTROL SCOREBOARD 12 5

instruction is translated and analyzed in this trip. Following instructions
are also brought through the same path in minor cycle intervals.

From instruction register U2, the instruction is issued to the functional
unit designated. Only two restrictions are made on this issue.

- The Register designated for the result must not be reserved for a result by a

The functional unit designated must not be busy.
previous instruction.

Because these two conditions are fairly simple to establish, the instruc-
tion issue decision is made quickly. Instructions may be issued at minor
cycle intervals dependent only on these two conditions.

The “supply” of instructions in the “pipe” leading to register U2 is
synchronized with each issue signal. Each time an ISSUE command is given,
a 30-bit quantity is transferred to the designated functional unit. Most
units, of course, only utilize 15 bits. For 30-bit formats, however, the second
parcel is also transferred a t the ISSUE command. Following this minor
cycle, a SKIP cycle is required in order to move beyond the second parcel of
the issued instruction.

The SKIP command is also useful simply for bringing instructions from
the instruction stack to register U2 after Branch. This is true since the only
action required of the SKIP command is to cause all the housekeeping tasks
of moving new instructions into position without actually issuing any. A
typical sequence of minor cycles is given below to show the usage of these
commands.

ISSUE BRANCH
Wait Branch

SKIP
r.,,,n
af\ir

Loads 1st instruction in U1
ioaas i n a nait ot 1st instruction

in U 1 and 1st instruction in U2

ISSUE 1st instruction
SKIP Assumes 1st instruction is 30.

bit format

ISSUE 2nd instruction
ISSUE 3rd instruction

Wait Next Instruction Word

This example shows an instruction word with a 30-bit instruction fol-
lowed by two 15-bit instructions. It shows the usage of the SKIP commands
which merely control the instruction “pipe” during GUing and skipping steps.

Handling of the test for Branching in the instruction stack is compli-
cated by the control of instruction issue. This complication arises from the
conditional Branch instructions which can do one of the following:

Loop
Jump

NO Branch-A conditional Branch, condition not met.

-A conditional Branch, condition met, in the stack.
-An unconditional Branch, or condition Branch, condition met, not in

the stack.

To test for the destination in the Stack, the contents of the program ad-
dress register, P, must remain set equal to the address which contains the
Branch instruction. Therefore, P is not changed until after the “third
parcel” instruction is issued, that being the last possible location of a 30-bit
Branch instruction in a word.

An additional problem of the Branch is the condition of the issue control
mechanism following a “fall-though,” or no-branch, condition. Instruc-
tions, following the Branch instruction in the same instruction word, are
held in the registers U1 and U2 after the issue of the Branch instruction.
Then, if the branch condition is not met, these instructions are brought to
ISSUE in the normal manner. As a result, the control over the instruction
stack output must track directly with the ISSUE command.

D. SCOREBOARD

A unique and essential part of the 6600 Central Processor control is the
Unit and Register Reservation Control, or the Scoreboard. What is in-
tended by this design is the simultaneous operation of functional units on a
single instruction stream. Many operations in these units are quite inde-
pendent of others, due to the relative simplicity of the instructions. It is
often particularly apparent that a sequence of arithmetic or logical opera-
tions can be executed simultaneously with a sequence of control or house-
‘x%,epY’6 vy.Au”’vU0. ‘XbUY’, ..AsULuy*w ..- UY “-*“..I. -1 ..----A vvAL--”-----

overlap is possible even in the single sequence.
One major premise of the Scoreboard design is that each new instruc-

tion be issued to its functional unit as early as possible in order to allow fol-
lowing instructions to be issued. In some cases, an issued instruction may
be held up after issue awaiting input operands, while a following instruction
may proceed without restraint.

Three types of conflict can be described in the usage of functional units
and registers, which must be resolved by the Scoreboard.

1. First Order Conflict

l-..--:-- ,,-,,+:,,, A -,:, ,,nmml- - A l l hn L-, ,rhh;ph ,,,&Anrsh1p

This is a conflict between instructions which require the same func-
tional unit or the same result registers.

Example one. Functional unit conflict
X6 = X 1 + X2
x5 = x3 + x4

126 CENTRAL PROCESSOR CONTROL SCOREBOARD 127

Both instructions use the Add functional unit, a situation in which
the second instruction must wait for the first to be completed.

In the case of multiply or increment instructions, two units are pro-
vided reducing the probability of this conflict.

Example two. Result register conflict
X 6 = X I + X 2
X 6 = X 4 * X 5

Both instructions call for register X6 for the result, another situation
in which the second instruction must wait for the first to be com-
pleted. Although the example shown is a trivial case, it will be seen
in later discussion that many nontrivial cases are possible.

The control over this conflict is simply that of not issuing the second
instruction until the first is completed. At issue time, the condition
must be determined early enough to stop the ISSUE command.

2. Second Order Conflict
This conflict occurs when an instruction requires the result of a
previously issued, and as yet uncompleted, instruction as a source
or input operand.

Example:
X 6 = X 1 + X 2
X 7 = X5/X6

Register X 6 in this example is used as the result of the Add instruc-
tion and then as the divisor in the Divide instruction. The second
instruction is issued but held in the Divide Unit until result X 6 is
....-J--
I sauy.

The second order conflict does not halt issuing of instructions but is
resolved by the scoreboard control over the functional unit.

3. Third Order Conflict
This conflict occurs when an instruction is called on to store its
result in a register which is to be used as an input operand for a pre-
viously issued, but as yet unstarted, instruction.

Example:
x3 = x1/x2
x5 = x4 * x3
X 4 = XO + X 6

In this example the third order conflict on the use of register X 4 is
a direct result of a second order confiict on register X3. Because the
instructions are issued on consecutive minor cycles and because the

Add function is much faster than Divide or Multiply, the addition is
accomplished and ready for entry in the result register X4 well in
advance of the start of Multiply. The second order conflict on
register X3 causes the Multiply to hold until that input operand is
ready. This holds up the entry of register X4 into the Multiply
Unit also.

Third order conflicts are resolved by holding the result in the func-
tional unit.

Scoreboard control thus directs the functional unit in starting, obtain-
ing its operands, and storing its result. Each unit, once started, proceeds
independently until just before the result is produced. The unit then sends a
signal to the Scoreboard requesting permission to release its result to the
result register. The Scoreboard determines that the path to the result reg-
ister is clear and signals the requesting unit to release its result. The releas-
ing units reservations are then cleared, and all units waiting for the result
are signaled to read the result for their respective computations.

DESIGNATORS

The Scoreboard gets its name from the number of designators and
identifiers used in performing the job of reservation control. Figure 75 on
page 129 diagrams the number of designators associated with one func-
tional unit. Shown is the Add Unit which is given the number 17 with func-
tion designators, reservation identifiers and flags as described below.

Fm
tl

Fi
Fk

-Function to be performed (ADD)
-Designates register Xi for result
-Designates register Xi as addend
-Designates register Xk as augend

-.

Qj

Qk

-Identifies the functional unit, by number, producing

-Identifies the functional unit, by number, producing
a result to be used as addend

a result to be used as augend

Read Flag j -A single-bit flag indicating that the addend is ready
Read Flag k-A single-bit flag indicating that the augend is ready

Xi -Identifies that the Add Unit, number 17, has reserved
register Xi for its result. (Bi and Ai for other
units)

All functional units are assigned a number to be used in the identifiers Q
for the units, X for the operand registers, B for the increment registers, and A
f~ t h ~ A ~ & G s regkiteis. These iiuduers are assigned as Io~~~ows.

128 CENTRAL PROCESSOR CONTROL SCOREBOARD 129

Designator (Octal)

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

Functional Unit

Branch
Increment 1
Increment 2
Shift
Boolean
Divide
Multiply 1
Multiply 2

Read Storage Channel 1
Read Storage Channel 2
Read Storage Channel 3
Read Storage Channel 4
Read Storage Channel 5
Fixed Add
Add

-

The Scoreboard operation is described in two parts; first, placing reser-
vations, and second, directing the read operand and store result operations
of each unit.

PLACING RESERVATIONS

This portion of the Scoreboard operation is executed in four sequential
steps a t the time an instruction is issued. These steps are as follows.

1. Reserve the functional unit, Set its “busy” flag, and enter the operating

2. Set the register designators in the functional unit, Fi, Fj and Fk.
3. Enter any previous result reservations on the entry operands, Qj and Qk.
4. Set the result register identifier, Xi, Bi, or Ai with the functional unit number.

mode (fm).

Step one, SET UNIT BUSY, is rather straightforward except as the deter-
mination of unit “busy” is made. As an example, two consecutive instruc-
tions to the same unit must be handled such that the second instruction
ISSUE is disallowed. Since these are one minor cycle apart, the setting of
unit “busy” flag by the first instruction followed by the test for busy by the
second instruction must be accomplished in one minor cycle.

Step two, SET F, transfers the i, j, and k fields of the instruction to the
designators of the functional unit. These are then used to designate operand
and result registers to be used by the unit. Figure 76 shows how these desig-
nators are transferred from U1 to U2 and then to the respective functional
units.

Notice that the Branch instructions cause a right shift of the desig-
nators i and j in register U1 to j and k respectively in register U2. This ma-

I 1

INSTRUCTION

CONTROL
I ISSUE t RESERVATIONS

CENTRAL U- REGISTERS MEMORY

(MAXIMUM)

SCOREBOARD
INSTRUCTIONS DESIGNATORS

ISSUE

*SET TI ml 1
MULTIPLY I

REQUEST
RELEASE

\
OPERANDS RESULT \ \ I

ENTRY GO STORE
’

READ OPERANDS
CONTROL1 SCOREBOARD

CONTROL
READ OPERANDS * REGISTERS CONTROL I

SET FLAGS

I *SET
Q

I OPERANDS RESULT /Ktn

&SET I I I k l t ISSUE El
INSTRUCTIONS

FIGURE 75 Reservation designators.

neuver is convenient to allow a direct usage of the Increment and Fixed Add
Units as partner units to the Branch unit for conditional branch instructions.

Step three in placing reservations, SET Q, is essentially a copying opera-
tion from one of the 24 XBA identifiers related to the 24 operating registers.
The identifier contains the functional unit number of the unit which has
reserved that register for a result. Since there are usually two Q identifiers,
one for each input operand, there may be two independent settings. See
Figure 77. Following this step, the essential link between a previous result
and an input operand is established.

Step four, the final step in placing reservations, SET XBA, places the

130 CENTRAL PROCESSOR CONTROL SCOREBOARD 13 1

INCR I

FIGURE 76 Set F

f i ~ ~ ~ t i ~ ~ o l :nit ZZZ-~C: k C,h: ~cE!SC~ G G G ~ Z ~ ~ : with the i-e-dt iagkie~.
Translations of the function to be performed are necessary in order to select
the correct register group, X, B or A, along with the correct register in the
group. Note that the unit numbers were chosen such that only two bits are
necessary for the B and A registers, whereas four bits are needed for the X
registers. Only three units cause results in B and A registers, whereas up to
ten “units” cause results in X registers. This, of course, includes the Read
Storage channels into registers X1 through X5. The unit number generator
produces the necessary unit numbers to be entered. In the case of Read
Storage instructions, which produce a new result in registers A1 through A5,
the A identifier is set with the Increment Unit number, and the partner X
identifier is set to the Read Storage Channel number. See Figure 78.

SET READ FLAGS

sulk. The first activity in the functional unit is the simultaneous “reading”
of input operands. The unit may not start until both operands are ready to
be read. Both Read Flags must, therefore, be set.

The conditions for setting a Read Flag are determined by the Q identi-
fier associated with that input operand and by the Release signal from the
functional unit identified by Q. The effect is to link the result of the previous
operation with the input operand. The example used in the description of
second order conflict is repeated here to show the effect.

X 6 = X 1 + X 2 1-4
X7 = X5/X6 t - - - H

When the second instruction is issued, the third step in placing reserva-
tions, SET Q, causes the unit number found in identifier X6 to be placed in
the Qk identifier for the divisor. The unit number is, of course, 17 for the
Add Unit, having been placed there at the time of issue of the first instruction.

When the Add Unit requests release and receives permission, a Release

1 t

I
ISSUE OX ISSUE OX

A5
A6
A7

I _ Q k

BOOLEAN

MULT I
MULT I1

132 CENTRAL PROCESSOR CONTROL

SCED
ISSUE XBA-DES

FIGURE 78 Set XBA

signal is sent to all units, among them the Divide Unit. This is shown in
Figure 79

All Release signal lines are shown as they appear to the divisor input
to the Divide Unit. The case in point is the Release signal from the Add
Unit, which AND'S with the translation of the unit number held in Qk for the
Divide Unit. Since the Qk identifier can hold only one unit number, only
one Release signal is selected. Assuming the Q identifier is set to zero, mean-
ing no wait is necessary, the Read Flag is set immediately after issue.

Figure 79 also shows how the Release signals are actually sent to all
Read Flag networks. The example of Release for the Read Storage Chan-
nel 5 is shown going to the Q translation for unit number 15 on all nine units.
This example appears to skip some Read Flag circuits, but it should be re-
membered that the X Registers are not connected as input operands in every
combination to all units. The k operand in the Increment Units and the
j operand in the Shift Unit are noteworthy.

When both Read Flags are set on any unit, the unit may be expected
to start. However, it should be clear that several units could reach this
conditinn sirniiltam~n.ol~!y. Fnr llnits :uh;& share dstn tr.dis (Chapter I<),

FIGURE 79 Set read flags divide unit.

134 CENTRAL PROCESSOR CONTROL

- A

CONTROL OP
ATAG : EXIT - GO READ 1

F i

REGS -

REGISTER ENTRY/EXIT CONTROL 135

- CH.7+8

this would mean simultaneous traffic on the trunk.
trunk priority condition also controls the start of the unit.

Therefore, the data

GO READ.
READ .~ TRUNK

RELEASE

An additional factor in the Scoreboard control has to do with the Re-
lease signal. The release of the result to the result register would be un-
complicated were it not for the third order conflict and the result data trunk
conflict. The third order conflict described before is repeated here.

X 3 = X l / X 2 I-.
x 5 = x 4 * x 3 t---t---j
X 4 = X O + X 6 k--j

In this example the third instruction is completed well in advance of
the first two but cannot release its result to register X 4 until the previous
Read is accomplished.

Close examination of the example will show that the Read Flag for
Multiply j input, corresponding to the X 4 input, is set and simply waiting for
the k Read Flag. The k Read Flag is held up by a second order conflict.
Note that the third instruction would not be issued if the Multiply j input
Read Flag were not set since that would indicate a previous result to register
X4 not yet completed.

This is a form of proof that a Read Flag can be cause to hold up the
Release signal. Each register can be described as "all clear" if no Read Flags
are set corresponding to that register. To generate the All Clear for each
register, the Fj and Fk designators are translated to the register number and
ANDed with the associated j or k Read Flag.

These ALL CLEAR signals for each register are then cornhind with the
tlallsiation of the result designator, Fi, for the unit to determine whether the
unit should be allowed to release its result.

Assuming that the unit is held back, some time later the Read Flag will
be cleared as a result of its unit starting, thereby clearing the flag. The
entire case is presented in Figure 80.

GO READ

E. REGISTER ENTRY /EXIT CONTROL

The secondary control over data entering and leaving the registers is
provided by a rather simple system. Entry to the X, B or A registers is a
direct result of the Release mechanism described in the section on the Score-
board. A "GO STORE" signal is generated by the release mechanism, direct-
ing the requesting functional unit to transmit its result to the registers via
its result trunk. At the same time, the result designator, usually Fi, is also
sent to the register end of that trunk. This designator is translated and con-
trnl :" w ---I iiii&& - 3 to ciear the result register and transfer the data from the

- a
RESULT

OPERANDS

GO SJORE-

-
3
U

FI -M)

-

I I I
U I

v) 111 Qk c
% CLEAR

I"

I I
UNIT BUSY GO READ

FIGURE: 80 Request release block diagram.

trunk to the correct result register. This entire operation is dependent on
the fixed-time nature of the synchronous design of control functional units

I A 6 W U "I "I.".." ""IIIC. UC."UU "I "1,- C.""'J U"II"I"1 *"I .bfi

isters X, B, and A. Note that the central storage entry trunk is also used by
exchange jump for initial loading of these registers. Also note the five D reg-
isters used to hold the read operands from central storage in case of the third
order conflict case described previously.

In a fixed, synchronous manner similar to the entry control, the register
exit control provides for the transfer of data to the data trunks. Seven
trunks are controlled as shown.

For the Increment Units, four Exit Control Tags are shown since they
may specify an A, B, or X register with the j designator and only a B register
with the k designator. Thus, the four tags, GO READ Xi, GO READ Bj, GO
READ Aj, and GO READ Bk are used to gate data on this pair of trunks.

For the Multiply, Divide and Boolean trunk pair, only two controls
are needed, GO READ Xi and GO READ Xk.

Three control tags are needed for the Add, Fixed Add, and Shift trunk-
pair because of the use of Xi and/or Bk for Shift.

described previously.

*..A An+- +-.l..lrc EX-.-- Q1 -h---.- dn+-3 -f +h- ---+--l *A- --m
UI.U u..uu UA....*..U.

All GQ READ s ~ d C,Q STORE tsgs zre gpcpretpb hy the Sccrehnr\rrl

SUMMARY 137

F. SUMMARY
It should be remembered at this point that this rather complex combi-

nation of translation and flag networks is intended to detect and cope with
the first order, second order, and third order conflicts described previously.
It should be obvious that an excessive amount of hardware for these networks
would make the scheme worthless.

Actually, these networks, while complex, require less hardware than an
average functional unit. To determine whether they are worth it, some
examples are given below. Several simple rules are used in the timing of the
examples, as follows.

1. Consecutive instruction words from storage require a minimum of eight minor

2. Double length instructions, 30 bits, require two minor cycles to issue.
3. A functional unit is free one minor cycle after the result is placed in a register.

The Appendix contains a comprehensive treatment of detailed timing consider-
ations, of which the three above were picked to explain apparent anomalies.

cycles.

EXAMPLE ONE

For a fist example the solution to the following equation is timed.

AX2 + BX + C = Y

The program to perform this solution is given below. The chart lists
six times by minor cycle count. These are:

ISSUE - Relative time of instruction issue.
START - Start of function. ’

RESULT - Function complete with result available.
L’d!? plxE ~ ‘+it r22.’y +: re”cp.

FETCH -Operand fetched from storage and available in X Register.
STORE - Result stored in storage.

I S R U F S
S T E N E T
S A S l T O
U R U T C R
E T L H E

T

N 1 A1 = A 1 + K1 FETCHX
FETCH A

N2 X O = X l * X l FORMX’

A2 = A2 + K2

X6 = XO * X2
A3 = A3 + K3

FORM AX2
FETCH B

N3 A 4 = A 4 + K4 FETCH C
X3 = X3 * X1
X5 = X6 + X3

FORM BX
FORM AX2 + BX

N4 = x 5 + X 4 FUKM Y
A7 = A7 + K5 STORE Y

1 1 4 5 9
3 3 6 7 1 1

9 9 19 20
10 19 29 30
11 11 14 15 19

17 17 20 21 25
20 20 30 31
21 30 34 35

js 3s 39 40
36 39 42 43 47

138 CENTRAL PROCESSOR CONTROL

I
2
-
-

3

5

-.
--__ -

SUMMARY 139

L.

If sequential times are counted with no losses due to instruction fetch,
the list shown at the right would total 78 minor cycles, rather than the 46
shown. Example one is shown in Figure 82 in a different form.

---__.
9 -.

FETCH X

FETCH A
FORM X‘
FORM AX‘
FETCH B
FETCH C
FORM BX
FORM AX’+BX
FORM Y
STORE Y

I

10
46 MINOF

CYCLES

_.__

nxz+

SEQLLIJTIAL (

CYCLES

80 I (120
MINOR CYCLES

FIGURE 82

EXAMPLE TWO

The single solution shown in Example one can be repeated for a case in
which both X and Y are considered vectors. A vector may be defined as a con-
secutive series of floating point numbers in central storage.

For this example the three values A, B, and C are considered constants.
The solution can be conveniently described as an initial phase and a repeti-
tive, or iterative, phase. The iterative phase can be held in the instruction
stack for very high speed. The store address is presumed in register A7.

This totals 71 minor cycles, covering one initial pass, and 99 repetitions
of 41 minor cycles each, using the instruction stack, for a total of 4,120 minor
cycles. Without parallel functions, the initial phase is 107 minor cycles and
99 repetitions of 66 minor cycles each for a total of 6,641 minor cycles.

EXAMPLE THREE

An additional advantage can be obtained in Example two by making a
slight modification of the “FORM Y’ and ‘ T E E Y” i?st~zc5~ns. Epecifi-

U F S S R
T E N E T

I
S

A S I T 0
R U T C R U

E T L H E

s

T

N1 A 1 = A 1 + K 1 FETCHX 1 1 4 5 9
A2 = A2 + K2 FETCH A 3 3 6 7 11

9 9 12 13 17
11 11 14 15 19

17 17 20 21
B2 = BO+ K5 Set Vector Length 19 19 22 23

N4 X O = X l * X l FORMX2 25 25 35 36
X6 = XO * X2 FORM AX2 26 35 45 46
XO = X3 * X1 FORM BX 36 36 46 47
A 1 = A 1 + B1 FETCH NEXT X 37 37 40 41 45

N2 A3 = A3 + K3 FETCH 6
FETCH C A4 = A4 + K4

N3 B1 = BO+ 1 Set B1 to 1

FIRST ITERATION

N5 B2 = 82 - B1 DECREMENT B2 41 41 44 45
X5 = X6 + XO FORM AX2 + BX 42 46 50 51
X7 = X5 + X4 FORM Y 51 51 55 56
A7 = A7 + B1

GO TO N4 IF B2 # 0 BRANCH

56 56 59 60 64

60 - 72

STORE Y

N6

N4 X O = X l * X l FORMX2 72 72 82 83
N6 = XO * X2 FORM AX2 73 82 92 93
XO = X3 * X 1 FORM BX 83 83 93 94

SECOND ITERATION

84 84 87 88 92 A 1 = A 1 + B1 FETCH NEXT X

N5 B2 = 82 - B1 DECREMENT B2 86 86 89 90
X5 = X6 + XO FORM AX2 + BX 87 93 97 98
X7 = X5 + X4 FORM Y 98 98 102 103
A7 = A7 + B1 STORE Y 103 103 106 107 111

N6 GO to N4 IF B2 # 0 BRANCH 104 - 113

cally, these two are positioned at the beginning of the iterative phase, as
shown on page 140.

This optimization produces an initial phase of 55 minor cycles and 100
iterations of 26 minor cycles each for a total of 2,655 as against 6,641 minor
cycles for the sequential equivalent. The last result can be accomplished by
making 101 passes of the iterative phase or by adding the two required in-
structions in location N7. Note that there is an initial result which should be
ignored.

I nese exampies are not considered to be speciai cases. EiigZy eiiicierii m.

140 CENTRAL PROCESSOR CONTROL

I
S
S
U
E

N1 A 1 = A 1 + K1 FETCHX 1
A2 = A2 + K2 FETCH A 3

N2 A3 = A 3 + K3 FETCH B 9
A4 = A4 + K4 FETCH C 11

N3 B1 = BO+ 1 SETB1 t o 1 17
82 = BO + K5 Set Length 19

FIRST ITERATION
N4 X 7 = X 5 + X 4 FORMY 25

XO = X 1 * X1 FORM X2 26
X6 = XO * X2 FORM AX2 27
A7 = A7 + B1 STORE Y 30

N5 XO=X3*X1 FORM BX 37
A1 = A 1 + B1 FETCH NEXTX 38
82 = 62 - B1 DECREMENT B2 39
X5 = X6 + XO FORM AX2 + BX 40

N6 GO TO N4 IF 82 # 0 BRANCH 44

SECOND ITERATION
N4 X7 = X 5 + X4 FORMY 56

XO = X1 * X l FORM Xz 57
X6 = XO * X2 FORM AX2 58
A7 = A7 + B1 STORE Y 61

N5 XO=X3*X1 FORM BX 68
A 1 = A 1 + B1 FETCH NEXT X 69
B2 = 82 - B1 DECREMENT 82 70
X5 = X6 + XO FORM AX2 + EX 71

N6 GO TO N4 IF 82 # 0 BRANCH 73

S R U F S
T E N E T
A S I T O
R U T C R
T L H E

1 4 ’ 5 9
3 6 7 1 1

9 12 13 17
11 14 15 19

17 20 21
19 22 23

T

25 29 30
26 36 37
36 46 47
30 33 34 - 38

37 47 48
38 41 42 46
39 42 43
47 51 52

56

56 60 61
57 67 68
67 77 78
61 64 65 69

68 78 79
69 72 73 77
70 73 74
78 82 83

82

use of the instruction stack is perhaps unusual in programs generated by com-
pilers such as FORTRAN. However, the presence of such a powerful mecha-
nism also offers incentive for extending the compiler to take advantage of it.
As you would expect, 6600 compilers have shown a steady improvement as
more concurrency is introduced. In any event, the concurrency of functional
unit operation is evident even without optimization.

PERIPHERAL
SUBSYSTEM

VII

As described in Chapter 11, the Peripheral Subsystem is made up of ten
small processors and twelve standard channels. In following sections, these
will be described, together with several key peripheral devices.

A. PERIPHERAL PROCESSORS

The processing requirements in an input-output section of any com-
puter include the following.

Transferring data between peripheral device and central storage.
Controlling the initiation of peripheral device actions.
Establishing priorities between devices.
Buffering data between asynchronous devices.
Interrupting the central processor for execution of priority tasks.

This list is not exhaustive but illustrates the nature of the processing
assigned to the ten small processors in the 6600 Computer.

These Peripheral and Control Processors, or PPU’s, are constructed
within the main frame cabinet of the 6600. This provides convenient use of
identical logic and storage modules as in the central processor and central
storage plus the shared use of the power and cooling system. It also allows a
unique form of design, called the “barrel,” which is shown in Figure 83.

Tfi.+?nrl nf incl_qcndently r~nnt,rgct.ed PPTJ’s t.hP hnrrnl r l n s i p iitilizes a

142 PERIPHERAL SUBSYSTEM

0

PERIPHERAL PROCESSORS 143

I 2 3 4 5 6 7 I0 I i i2 13 14 Ix) CHANNELS

network of registers to share one common arithmetic, logical, and distribu-
tion system. The barrel contains, logically, ten positions, each one represent-
ing a PPU. One position is labeled the “slot,” in which one step can be per-
formed. Typically, a PPU instruction requires several steps for execution.
Each step is a comfortable fit of the storage cycle, 1000 nanoseconds and the
arithmetic, logical or data transfer cycle required, a minor cycle of 100 nano-
seconds. For example, the sum of an operand from the PPU storage and the
PPU A register reynirec &y In(! ~ Z ~ ~ : ~ C Z E & f ~ r the xithiiieiic bui i000

nanoseconds for the operand storage reference. This convenient “fit” is em-
phasized by the choice of ten PPU’s time-sharing the common slot.

Once every minor cycle, 100 nanoseconds, alI information in the barrel
is moved one position. The information for one PPU is therefore moved
through the slot position once each major cycle. All ten PPU’s are time
shared in this manner by the slot hardware, without degrading their
performance.

INSTRUCTION FORMATS

Two formats are used in the PPU as shown in Figure 84.

SHORT FORMAT I] [d l
6 6

rn LONG FORMAT Id] I 1
6 6 I2

FIGURE 84

The short format is held in one PPU storage location, whereas the long for-
mat requires two consecutive PPU storage locations. These two formats
allow a very flexible operand addressing scheme.

A particularly useful property is the assignment of the first 64 PPU
storage locations. These locations can be directly addressed by the d field of
the short format. This is a fast operation and also uses only one storage loca-
tion for the instruction. These locations can be conveniently used for tem-
p~rz i~y BtGi-iige, puhlte~a, iabies, and SO on,

Other addressing combinations are described in the following list.

d Implies d itself.
(4
(((3)
rn
m + (d)
(rn + (d))
drn

The contents of address d, one of the 64 initial storage locations.
The contents of the location specified by (d).
Implies rn itself used as an address.
The contents of d are added to rn to form a jump address.
The contents of d are added to rn to form the address of an operand.
An 18-bit quantity with d as the upper six bits and rn as the lower

twelve bits.

JUMPS

The first set of instructions to be described are the Jump instructions.
These instructions provide for conditional branches, with the destination
relative to the current program address, and unconditional branches, with
ihe destination formed by a base address plus index.

144 PERIPHERAL SUBSYSTEM PERIPHERAL PROCESSORS 145

Time
(Major Cycles)

00 Pass 1
01 Long Jump to m + (d) 3
02 Return Jump to m + (d) 4
03 Unconditional Jump d 1
04 Zero Jumpd 1
05 Nonzero Jump d 1
06 Plus Jumpd 1
07 Minus Jump d 1

Long Jump, 01, and Return Jump, 02, utilize the rn field of the long
format as a base address and one of the fist 64 storage locations as an index.
Return Jump assumes that a long jump is stored a t the destination address.
Program address of the next instruction following the Return Jump, (P) + 2,
is placed in the rn field of that assumed instruction. Program control is then
transferred to the next location following the assumed Long Jump instruc-
tion. Typical usage of this instruction will be as a “normal exit” from the
program entered by Return Jump, as shown in Figure 85.

p=0300 Gg:) RETURN JUMP
Enters (PI + 2 = 030;
Then branches to 14

EXIT to
originoting
program

IPr=14OO 1401 010d X EXIT

1 402 - .

1403 -
I404
1405
1406 0371 Jump back to Exit

-

in location 1401,
2

FIGURE 85

Unconditional Jump d and the four Condition Jumps utilize the current
program address (P) as a base and the d field of the instruction as a signed
relative index. If the d field is positive, the effect is to branch forward by the
amount of d. If the d field is negative, the branch is backward. The example
in Figure 85, in which an Unconditional Jump, 0371, branches back to the
“Exit,” shows a negative d field, 71. This is the equivalent of minus 6 octal,
causing the program address P to be reduced from 1406 to 1400.

The Conditional Jumps are used to test the current condition of the A
Register and are self-explanatory.

NO ADDRESS

A set of instructions, classified as No Address, utilizes the d field or the
dm field as constants. In these instructions no additional storage references
are required beyond those needed to obtain the instruction itself.

Time
(Major Cycles)

10 Shiftd 1
11 Logical Difference d 1
12 Logical Product d 1
13 Selective Clear d 1
14 Load d 1
15 Load Complement d 1
16 Addd 1
17 Subtract d 1
20 Load dm . 2
21 Adddm 2
22 Logical Product dm 2
23 Logical Difference dm 2

An implied destination, the A Register, receives the results of the above
operations. In some cases, as described below, the A Register is also an input
operand for the operation.

10

11

12

13

14

15

16

17

Shift d
This instruction shifts the contents of A right or left d places.
If d is positive (00-37)8, the shift is left circular; if d is negative
(40-77)8, A is shifted right open-ended without sign extension.
Logical Difference d
This instruction forms in A the bit-by-bit logical difference, or
exclusive OR, of d and the lower six bits of A, leaving the upper
twelve bits of A unaltered.
Logical Product d
This instruction forms the bit-by-bit logical product, or AND, of
d and the lower six bits of A, leaving w m p s in tho i~ppe twplvq

bits of A.
Selective Clear d
This instruction clears any of the lower six bits of A where there
are corresponding ones in d, leaving the upper twelve bits of A
unaltered.
Load d
Thus instruction clears the A register and loads d.
Load Complement d
This instruction clears the A register and loads the complement
of d, sign extended.
Add d
This instruction adds d (treated as a six-bit positive quantity)
to the contents of the A register.
Subtract d
Thin instructin~ s&tr&- d (tre&,ed ‘n 2 si:: bit pcsiti.;:: y~zz
tity) from the contents of A.

146 PERIPHERAL SUBSYSTEM PERIPHERAL PROCESSORS 147

Only one major cycle is needed for the above instructions to fetch the
instruction itself since no further storage references are needed. This, of
course, means that the entire operation is accomplished in the one minor
cycle slot time following the instruction fetch.

The following NO ADDRESS instructions require two major cycles to
complete the fetch of the long-format instructions.

20

21

22

23

Load dm
This instruction clears A and loads an 18-bit quantity consisting
of d as the higher six bits and m as the lower twelve bits.

Add dm
Ths instruction adds to A the 18-bit quantity dm.
Logical Product dm
This instruction forms in A the bit-by-bit logical product, or
AND, of the contents of A and the %bit quantity dm.

Logical Difference dm
This instruction forms in A the bit-by-bit logical difference,
or exclusive OR, of the contents of A and the 18-bit quantity
drn.

DIRECT-INDIRECT-INDEX

A set of instructions is included in the PPU’s which allow addressing by
direct, indirect, or indexed modes. Direct mode means d is used as the ad-
dress of PPU storage, specifying one of the lkst 64 storage locations. Indirect
mode means the contents of the storage location, specified by d, are used to
.$pci-fy the ntex-gz k&hi uf &a operand. Inciex mode means that the m
field of the instruction serves as the base address of the operand, to be modi-
fied by (d). If d = 0, the operand address is simply m; but if d # 0, then
m + (d) is the operand address.

30
31
32
33
34
35
36
37

Load (d)
Add (d)
Subtract (d)
Logical Difference (d)
Store (d)
Replace Add (d)
Replace Add One (d)
Replace Subtract One (d)

DIRECT

Time
(Major Cycle)

2
2

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

INDIRECT

Load ((d))
Add ((d))
Subtract ((d))
Logical Difference ((d))
Store ((d))
Replace Add ((d))
Replace Add One ((d))
Replace Subtract One ((d))

INDEX

Load (m + (d))
Add (m + (d))
Subtract (m + (d))
Logical Difference (m + (d))
Store (m + (d))
Replace Add (m + (d))
Replace Add one (m + (d))
Replace Subtract one (m + (0

3
3
3
3
3
5
5
5

3-4
3-4
3-4
3-4
3-4
5.6
5-6
5-6

For simplicity, these instructions are described in groups of three to
show the three addressing options. Note above that each additional PPU
storage reference to accomplish the indirect or index simply requires an ad-
ditional Major Cycle. When d = 0 in the index case, no additional Major
Cycle is needed.

30
40
50

31
41
51

32
42
52

33
43
53

Load (d)
Load ((d))
Load (m + (dN
These instructions clear the A Register and load the twelve-bit
quantity from storage, leaving the upper six bits of A zero.

Add (d)
Add ((d))
Add (m.+ (d))
These instructions add to the A Register the twelve-bit operand
from storage, treated as a twelve-bit positive quantity.

Subtract (d)
Subtract ((d))
Subtract (m + (d))
These instructions subtract from the A Register the twelve-bit
operand from storage, treated as a twelve-bit positive quantity.

Logical Difference (d)
Logical Difference ((d))
Logical Di::ereiice (IT -i- (bj j

148 PERIPHERAL SUBSYSTEM PERIPHERAL PROCESSORS 149

These instructions form in A the bit-by-bit logical difference, or
exclusive OR, of the lower twelve bits of A and the twelve-bit
operand from storage, leaving the upper six bits of A zero.

34 Store (d)
44 Store ((d))
54 Store (m + (d))

These instructions store the lower twelve bits of A in the speci-
fied PPU storage location.

35 Replace Add (d)
45 Replace Add ((d))
55 Replace Add (m + (d))

These instructions add the quantity from storage to A and store
the lower twelve bits of the result a t the same storage location.
The resultant sum is left in A.

36 Replace Add One (d)
46 Replace Add One ((d))
56 Replace Add One (m + (d))

These instructions replace the quantity in the storage location
with its initial value plus one. The resultant sum is left in A,
destroying the previous contents of A.

37 Replace Subtract One (d)
47 Replace Subtract One ((d))
57 Replace Subtract One (m + (d))

These instructions replace the quantity in the storage location
with its initial value minus one. The resultant difference is left
in A, destroying the previous contents of A.

CENTRAL PROCESSOR AND CENTRAL STORAGE

Instructions are included in the PPU repertoire which allow each PPU
to cause an Exchange Jump in the CPU and also to monitor the CPU program
address.

2600 Exchange Jump
This instruction transmits the 18-bit quantity in the A reg-
ister to the Exchange Jump mechanism of the CPU with an
initiating signal. As described in Chapter VI, the Central
Processor is interrupted; an exchange is made between the
CPU Registers and Exchange Package in Central Storage at
the location obtained from the PPU A Register; and finally
the CPU is started on the new program.

261j Monitor Exchange Jump (Optional)
This instruction is provided as an option in conjunction with
the Central Exchange Jump, CEJ. The d field of this short-

format instruction is split into two octal digits, including the
option designator (1) and a CPU designator (j), for use with
the two-CPU 6500 Computer, Monitor Exchange Jump op-
erates exactly the same as EXN, Exchange Jump above, only
if the Monitor Flag, in the CPU, is cleared. The flag is then
set, indicating that the CPU is in the monitor state. If the
flag is set, this instruction is a PASS. Therefore, a confirma-
tion routine is required involving a simple communication
between the CPU monitor and the PPU.

272 Read Program Address
This instruction transfers the contents of the CPU program
address register to the PPU A Register to allow PPU monitor-
ing of the condition of the CPU program.

Each PPU can access the Central Storage by single word or block trans-
fer, using the following instructions.

60

61

62

Central Read from (A) to d
This instruction transfers a 60-bit word from central storage
to five consecutive locations in the PPU storage. The 18-bit
address of central storage must be loaded in the PPU A Register
prior to this instruction. The five twelve-bit portions of the
60-bit word are disassembled from left to right and loaded con-
secutively beginning at PPU location d.

Central Read (d) words from (A) to rn
This instruction provides a block transfer from Central Storage
to PPU Storage. The 18-bit address of the beginning word in

this instruction.
r,,=trd s+..--- -.._ + L --a a
v=ilL*

LL- n T T A n - L - L - I.-- ruiase iilwlr uc ludueu iii uie rFu n negisux prwi tu

During this block transfer, the PPU program address is tem-
porarily placed in PPU storage location 0 in order that the pro-
gram address increment mechanism can be used to advance m.
The PPU Q Register is used to decrement the contents of lorn-
tion d.

The block of central storage locations goes from address (A) to
address (A) + (d) - 1. The block of PPU storage locations
goes from addres m to m + 5(d) - 1. See Figure 86.

Central Write to (A) from d
This instruction assembles five consecutive twelve-bit words
from PPU storage into a 60-bit word and stores the word in
Central Storage. The 18-bit address of Central Storage must
be loaded in the PPU A Register prior to this instruction. The
fist twelve-bit word appears as the left-most, or higher order,
portion of the 60-bit word.

150 PERIPHERAL SUBSYSTEM PERIPHERAL PROCESSORS 151

CENTRAL STORAGE
ADDRESS 7 1 PPU STORAGE

-
(A)

FIGURE 86

63 Central Write (d) words from rn to (A)
This instruction assembles a block of 60-bit words and writes
them in Central Storage. The mechanics of the execution are
identical with Central Read above with the exception of the
direction of data flow.

INPUT/OUTPUT

All PPU’s have access to the twelve 1/0 channels in turn during their
portion of time in the slot. At this time, data may be transferred or condi-
tions sampled.

Two flags are utilized for each channel in order to control the channel
and to indicate its status.

Active/Inactive Flag
Each channel has this flag to indicate that it has been selected for
use and is busy.

Full/Empty Flag
Each channel has this flag to indicate that the channel register
contains a word.

Each channel contains a register used for either direction of data flow.
Data may pass between PPU’s through these channels if desired, using the
PPU instructions.

The following instructions are provided for sampling channel condi-
tions.

64 Jump to m if channel d active
65 Jump to m if channel d inactive

These instructions transfer the program sequence to storage
location m if the condition of the active/inactive flag for channel

d is “true.” Otherwise, the current program sequence is
continued.

66
67

Jump to rn if channel d full
Jump to rn if channel d empty

These instructions transfer the program sequence to storage
location m, if the condition of the full/empty flag for channel d is
“true.” Otherwise, the current program sequence is continued.

Data transfer on the channels is controlled by instructions which pro-
vide single word transfer or block transfer.

70
72

Input to A from channel d
Output (A) on channel d

These instructions transfer a word between the A Register and
channel d.

71
73

Input (A) words to m from channel d
Output (A) words from rn on channel d

These instructions transfer a block of words between the PPU
Storage and channel d. Similar to the Central Read and Central
Write, the program address is temporarily stored in PPU storage
location 0 so that the program address increment mechanism can
be used to increment rn. The content of A is decremented to
control the length of the block transfer.

Control over the channel is provided by two PPU instructions.

74 Activate channel d
This instruction activates the channel specified by d. This sets

channel to the 1/0 equipment connected.

This instruction deactivates the channel specified by d. This
clears the active flag for channel d and also signals “inactive” on
the channel to the 1/0 equipment.

Control of the 1/0 equipment connected to a channel is provided by

the &i:,p fiag fer !j 3Ed &.c! sigp& “-...ti’:e” 0:: +,he

75 Disconnect channel d

two instructions.

76
77

Function (A) on channel d
Function rn on channel d

These instructions transfer a twelve-bit word on channel d, either
from A or the m instruction field, together with a “function”
signal.

Typical reaction to such functions is the setting or clearing of
control switches in the 1/0 equipment.

152 PERIPHERAL SUBSYSTEM
PERIPHERAL PROCESSORS 153

Channel controls are very simple as can be seen in Figure 87.
The two flags are set and cleared as shown both from the PPU and from

the channel equipment.
Included within the PPU logic for convenience is a Real Time clock

which is available to all PPU’s on peripheral channel 12. This clock “ticks”

FULL

-INACTIVE

TOIFROM

TOIFROM

PPU

CHANNEL

every major cycle, or one microsecond. The clock is, in fact, a twelve-bit
counter which sweeps, or “starts over,” every four milliseconds. The operat-
ing system can utilize this mechanism to construct a “day” clock or other
timing counts.

BARREL

Four registers are contained in each position of the PPU barrel. These
are:

A Register 18 bits
P Register 12 bits
Q Register 12 bits
KRegister 9bits

The first two, A and P are explicitly defined and referenced in the PPU
instructions. The other two, Q and K, are temporary holding registers pro-
viding for various operations. The Q Register, for example, holds:

The address of the operand during direct addressing, - The address of the address of the operand on indirect addressing,
The peripheral address of data used during central read or write instructions,
The upper six bits during constant mode instructions,

* The channel number on all 1/0 instructions and channel jump instructions, - The shift count on shift instructions,
The specific number of locations to jump on relative jumps.

The K Register holds the six-bit function code, F, of the current instruc-
tion, and a count of the number of major cycles taken.

Short-format, no-address instructions do not use the K Register since
the translation is performed directly on the instruction and the execution is
completed in one cycle.

The above values completely d e h e the “state” of each PPU for use in
the next slot time. When these data reach the slot in their turn, one instruc-
tion step can be completed.

Figure 88 is a diagram of the slot showing the major inputs, outputs,
and functions performed.

BARREL

A ADDER

ADDER

K TRANSLATIONS I
FIGURE 88 Elements of the slot.

A storage address for a particular processor is taken directly from the
barrel six minor cycles before that processor is ready to enter the slot. This
allows time for operands to be obtained from storage to be used in the slot.
Translation of K is also begun in advance of the slot in order to control the
slot operation.

154 PERIPHERAL SUBSYSTEM
DEAD START 155

The A Adder is used to execute add, subtract, selective clear, logical
product, and logical difference instructions.

The Shift network is similar to that of the CPU, Chapter V. The shift
is completed in parallel in one pass through the slot.

The P Incrementer is able to add zero or one to P. In instructions which
require several trips around the barrel, P is, of course, incremented only once.

The Q Adder is used to compute relative addresses, indexed addresses,
and to provide connective paths between P and Q.

The K counter produces a trip count which controls the sequence of
operations for each instruction. This count can be separately set to handle
repetitive sequences, for example, for block transfers.

CENTRAL READ/WRITE PYRAMIDS

Assembly and disassembly of twelve-bit and 60-bit words is accom-
plished in two pyramid networks. During Central Read operations, a 60-bit
word enters the Read pyramid. In subsequent major cycles the PPU which
initiated the operation removes twelve-bit words left to right; the process
actually causes the remaining bits to move through the pyramid, a row a t a
time. This opens up the pyramid to another 60-bit entry. Since only one
Central Storage access is allowable from all PPU’s at one time, the words
move through the pyramid in step.

A similar operation is performed in the Write pyramid, with each PPU
entering a t the correct point depending upon the number of assembly cycles
it has taken. Again, another PPU may make use of the pyramid and will
keep in step.

6. DEAD START

A typical obstacle to the understanding of a complex instrument is the
inability to discover the answer to the question, “How does it start?” This
section is devoted to answering that question.

A first assumption is made that there are a number of peripheral devices
capable of loading the computer’s operating system. These may be:

Magnetic tape
Punched cards
Magneticdisk

A second assumption is made that a direct entry of “machine language”
programs is possible from these devices.

To activate the DEAD START sequence, the 6600 cabinet contains a
panel containing several control switches and a 12 x 12 matrix of switches.
See Figure 89. Also contained are switches for performing maintenance
tests.

FIGURE 89

156 PERIPHERAL SUBSYSTEM DISK STORAGE 157

In order to load an initial system program, two control switches are
activated. The SWEEP/LOAD/DUMP switch is set to the LOAD position. A
very simple “program” is then set up in the 12 x 12 matrix. Finally, the
DEAD START switch is turned on momentarily, then off.

While the DEAD START switch is in the “ON” position, a MASTER
CLEAR/DEAD START signal is repetitively transmitted throughout the sys-
tem. This is a one-microsecond signal and is transmitted every 4096 micro-
seconds, until the DEAD START is turned off. This signal prepares the entire
system for start by presetting and clearing flip-flops throughout the system
logic. The signal also:

Assigns each PPU to an 1/0 channel corresponding to its number; for example,
PPU 0 to channel 0, PPU 1 to channel 1, etc. - Sets all 1/0 channels to Active and Empty. - Sets all PPU’s to an intermediate step of an INPUT instruction, waiting data

Transmits a M A S T E R C L E A R to the peripheral equipment on each channel.
Sets all PPU’s to program address 0.
Sets location 0000 in all PPU’s to zero.
Sets A for all PPU’s to an input word count of 10,000. - Sets the CPU to STOP.

on the 1/0 channel.

This pulse is originally generated from the Real Time clock which is a
twelve-bit counter connected directly to the Major Cycle.

Following this preparation, the DEAD START Synchronizer connected
to 1/0 Channel 0 is activated. First action is a “Full” pulse on Channel 0
with no data. PPU 0 receives the “Full” signal, stores the zeroes from Chan-
nel 0 input register in location 0000, and sends an Empty pulse to the DEAD
START Synchronizer. The DEAD START Synchronizer transmits the twelve
words from the 12 x 12 matrix of the DEAD START Panel on Channel 0 to
be stored in locations 0001 tlrTc@ %I4 (oct2) of PPC 8. Fdowing the
last word, the DEAD START Synchronizer sends a disconnect on Channel 0
which causes PPU 0 to exit from the Input instruction.

The exit from an INPUT instruction, as described previously, involves
recovering the program address from location 0, incrementing it by one, and
beginning the program sequence at the resultant location. Since the con-
tents of address 0000 is zero, the initial program address is 0001. In other
words, PPU 0 is caused to begin a t the t b t word loaded from the DEAD
START panel.

The twelve-word “program” thus loaded can be a considerable aid in
very basic maintenance of the computer. To load the normal operating
system, however, a program such as the following can be used.

PROGRAM

This program selects a magnetic tape unit for input, then waits for the
tape unit to be manually activated. The typical initial program on the

TABLE VI Dead Start Panel Settings

(Bootstrap Loading of the System Tape for 6000 Series Tape Units Only)

Memory’ Contents Action Generated Toggle Settings

01 1410
02

730x 1
Load (A) with lo8 001 100 001 000
Output lo8 words starting at loca- 11 1 01 1 000 xxx

03 0006 I
04 750x

05 7113

06 0000
07
10 2060

2020

11

12
13 740x
14 710x
15 0000

770x I

tion 6 on channel x (processor
x will store these in its memory
beginning at location 0)

Disconnect channel x (permits ex-
ecution of program)

Set to input mode (7770 words to
location 0000 on channel 13)

Select rewind tape on channel x

Read up to 10,000 words in bi-
nary mode on channel x

Activate channel
Set to input mode (channel x)
Cleared during dead start

000 000 000 110
111 101 000 xxx

111 001 001 011

000 000 000 000
111 111 000 xxx
010 000 110 000
111 111 000 xxx

001 000 010 000
111 100 000 xxx
111 001 000 xxx

* Locations at peripheral processor 0.

magnetic tape is sufficient to “bootstrap” the remainder of the operating
system.

As this bootstrap program is entered, the remaining nine PPU’s are
loaded through PPU -1.1 0. To accomplish -rill this, PPU 0 loads each channel acting
as an input unit. wnen each r r u contains a system “resident“ program,
PPU 0 disconnects each channel, thereby causing each PPU to begin the
“resident” program sequence. In the course of loading each PPU, PPU 0
can also set location 0000 for each to a number other than zero. This will
cause the PPU to begin a t a location in the loaded program other than ad-
dress 0001 and can be convenient. The CPU is, of course, started by an
Exchange Jump as described previously.

C. DISK STORAGE

b o n g the many devices which may be connected to a 6600 hput-
output channel, an essential secondary storage unit is the 6638 Magnetic
Disk Storage. This unit provides about 800 million bits of on-line storage
in one cabinet (Figure 90):

Storage is accomplished by magnetically recording on many flat disk
surfaces. The read-write heads can be positioned to a number of tracks with

158 PERIPHERAL SUBSYSTEM
DISK STORAGE 159

a hydraulic mechanism. The heads are maintained a t a very close spacing
with the disk surface by means of an air bearing formed as a result of the
surface shape of the head and the spinning disk.

-. ~ ..
ijisks are grouped in four “quadrants” using two vertically mounted

spindles. See Figure 91.

MOTOR a
FIGURE rn 91

POSlTlONER 4 LOWER

MOTOR r‘i m

Motors are mounted between each vertical quadrant on each spindle,
directly driving each at about 1200 revolutions per minute. Each quadrant
contains eighteen disks with 32 data surfaces. Heads are mounted on arms
connected to two “reactive” positioners, one for the upper pair of quadrants,
and one for the lower pair. When positioning to a new track, the hydraulic
mechanism causes all heads in the appropriate half of the cabinet to move;
that is, upper or lower. Note that the movement of the head assembly in the
left disk quadrant is counteracted by an opposite movement of the head
assembly in the right disk quadrant.

For convenience, the upper pair of quadrants can be considered separate
and independent of the lower pair. The 6638 Controller thus has the ability
to operate each half as separate disk units. The controller also allows con-
nection to two independent 1/0 channels. These may be on separate 6600
Computers, thereby providing access for both to common secondary storage.

Data is stored in the 6638 Disk Storage in fixed length blocks of 64 cen-
tral storage words of sixty-bit length. Each track contains 100 sectors of
322 cells per sector with gaps between each sector to provide control space
for headers and to provide ability to alter sectors.

Twelve heads are utilized in parallel on a read or write operation. Three
heads from each of four head pads are, therefore, operating together. (Note:

Transistor mounted on header with leads bonded to posts. Ball-point pen at left.

160 PERIPHERAL SUBSYSTEM DISK STORAGE 161

There are six heads mounted in each head pad having access to one disk
surface.) There are, therefore, 322 twelve-bit “bytes” transferred in one
sector read or write. This is equivalent to a block 0€64,60-bit, central stor-
age words with two extra bytes for control. This block, or data sector, is
stored in the PPU controlling the Disk Storage, taking up 322 PPU storage
locations.

In long transfers, alternate sectors are transferred by the PPU. In this
case, the PPU reads from the Disk into PPU storage, then block transfers to
Central Storage. The PPU can then return to the Disk in time for the next
alternate sector. Because a disk surface can contain a small number of flaws,
it is convenient for the PPU to keep track of these flaws by “half-tracks.”
These half-tracks refer to the two sets of alternate sectors present in one
head position.

Data files are also allocated within the disk storage unit on a half-track
basis. This reduces the allocation work load on the PPU and tends to en-
courage longer transfers between disk and central storage. This last is a
d e h i t e value in efficiency.

Positioning of the head arms provides access to 192 tracks per arm.
Since there are six heads in one head pad mounted on each arm, this requires
32 actual positions qf the arm. These characteristics are listed below for
convenient reference.

1. 72 Disks, 64 used for data.
2. 128 surfaces for data, with six heads per surface.
3. 12 heads parallel.
4. Positioning time-25 milliseconds minimum to 150 milliseconds maximum.
5. Latency (time for one revolution)42 milliseconds.
6. Sector size-322 cells per track.
7. Sector gap-108 cells.
8. Sectors per revolution-100.
9. ?tvo positioners. 32 positions Pwh

10. Data per position, each positioner-12.4 million bits.
11. Capacity total-792 million bits (for this sector size).

A normal sequence of control by a PPU over the Disk Storage is as
follows.

1. Connect and Status
This control step is initiated by a “Function” instruction in the PPU. The
function code is transmitted to the Disk Storage Controller over the
peripheral channel and attempts to connect the unit to the channel. If
the other access channel already has control of the unit, the connect is
not achieved.

If connection is made, subsequent functions and data transfers can be
performed. If connection is not made, only status can be read.

2. Activate Channel
This control step is initiated by the PPU instruction “Activate Channel
d” which causes the Disk Storage Controller to present status informa-
tion on the input channel. A request status function may also be inserted
here with more complex configurations on the channel.

Status information includes: - Current sector address
* Parity error

Not ready - Not connected
Lost data

This PPU “Function” instruction causes the positioning mechanism to
seek one of 32 positions.

This PPU “Function” instruction causes the selection of one of 32 head
groups. Each head group contains twelve heads for twelve-bit parallel
operation.

This step is initiated by a PPU block transfer, either input or output, of
one sector. Because Disk Storage requires a minimum of one sector for
read or write, the block transfer length is set to 322 twelve-bit words, by
the program.

When a new position select is received, step three above, the unit verifies
that the correct track is found before a “ready” status is established. There-
fore, a more elaborate sequence must be used to verify position.

The Disk Storage Unit is an essential component in the operation of the
6600 computing system. Typically, one PPU is assigned to transfer data as
needed between Disk Storage and Central Storage. Access time to the
correct position is probably the most serious throughput limitation in using
this unit. Although latency can also be a factor, transfer of more than one
sector of 64 central storage words is preferred if possible. This, of COW*,
depends on the nature of data files being stored.

3. Select Position

4. Select Head Group

5. Read (or Write)

SYSTEMS OPERATION

Vlll

In order to function at all the Control Data 6600 requires an operating
system. During development of the computer, an experimental operating
system was also developed. This was called the Chippewa Operating Sys-
tem, referring to the Chippewa Laboratory of Control Data. This system
has formed the nucleus of later operating systems for the 6600. Some of the
interesting features of the Chippewa Operating System are discussed in this
Chapter. I t is not within the scope of this book to give a complete exposition
of the 6600 operating system.

It should be noted that the operating system described here is one of
many that might be conceived for the 6600. Other systems may attempt
different emphasis on the handling of jobs and resources.

A. FILES

Information, both programs and data, may enter and leave the com-
puting system through the use of files. For illustration, the punched card
reader, the disk storage unit, and the printer are of interest.

An INPUT FILE is established on the disk storage unit from the punched
cards being read. The PPU’s are very conveniently used for this purpose.

Similarly, on completion of a job an OUTPUT FILE is established on the
disk storage unit. A disposition is assigned to this output file, such as PRINT,
PUNCH, PUNCH BINARY, and so on.

1 6 4 SYSTEMS OPERATION TABLES 165

A collection of input files can form an input queue just as a collection
of output files can form an output queue for printing, punching, and so on.

It is convenient, if not essential, that a common set of definitions be
used in such files in order that they may be transferred from one device to
another. In the Chippewa Operating System, file names must begin with
an alphabetic character and may contain up to seven alphanumeric char-
acters. Except for a magnetic tape file which may have more than one file
mark, files consist of a single physical file divided into logical records. A
logical record consists of a number of 60-bit words containing either coded or
binary data. The form of storage and the method of separating logical
records depend on the equipment.

This definition of logical records makes it possible to have equivalent
forms of file on several devices, taking advantage of each form of storage.

Card Files use a format as follows, which allows the use of both binary
and coded cards. Holes are punched in column 1 in the rows listed.

Rows 7, 8, and 9
Rows 6,7,8, and 9
Rows 7 and 9
Rows 7 or 9, not both

End of logical record
End of file
Binary card
Codedcard

This allows up to fifteen central storage words on a binary card, starting
a t column 3. For binary cards, a word count is included in column 1 and a
checksum in column 2. Column 80 includes a binary serial number.

Coded cards are translated on input from Hollerith code to display code
and packed 10 columns, or characters, to a central word.

Disk files make use of the efficient storage packing of the disk storage
unit. The alternate sectors of the Disk Storage make up a half-track. Stor-
age for a disk file is reserved by the monitor in half-tracks as needed. Each
disk file must start a t the first sector of a half-track. When a half-track is
full, the file is continued at the fist sector of another half-track.

Tnzc contrd 2yt, are recorded at the beginning of each sector. The
h t provides linkage data to the next sector. If the file is continued on the
same half-track, this first byte contains a sector number. If the file is con-
tinued on a new half-track, this fist byte contains a logical half-track num-
ber. If no further information exists in the file, this first byte is zero. The
second control byte specifies the number of central storage words of data in
the sector. End-of-logical record is indicated if this number is less than 64.
Both control bytes are zero for end-of-file.

The operations which may be performed on a file include:

Read-coded or binary,
Write-coded or binary,
Backspace,
Write end record,
Write end file mark.

B. TABLES

All PPU requests for input-output involve a set of tables defining the - _ - .

nature of the file and where it is stored.
A central program may call for an 1/0 operation by a simple message

left in its program space. This message is scanned by a PPU acting as system
monitor (Section D, this Chapter). The message includes the program name
and other pertinent information.

A portion of Central Storage is utilized to maintain tables and com-
munication areas for system control purposes. Thisis called central resident.

The central resident contains an equipment status table EST which
contains an entry for every equipment connected to peripheral channels.
Each entry contains:

Address of control point (Section D, this Chapter) to which this equipment is

Channel number to which equipment is attached,
Equipment synchronizer and unit number,
Equipment type code; such as, tape, disk, etc., and
A ready bit.

currently assigned,

The central resident also contains a channel status table CST which
relates the current assignment of PPU’s to channels.

The name and status of all files are stored in the central resident area
as well. Two central storage words are used for each file in the table, the first
word belonging to the file name table FNT and the second word belonging to
the file status table FST.

The Ikst word entry, FNT, contains:

File name of up to seven alphanumeric characters, starting with a letter, stored

File type, may be one of four types.
in display code.

0 INPUT file-stored form on disk
1 OUTPUT file-stored form on disk
2 COMMON file-may be passed from job to job
3 LOCAL file-discarded at end of job

priority.
Control point number (Section D, this Chapter).

The second word entry, FST, contains a pointer to the equipment status
table EST identifying the device and other data as follows.

DISK Equipment number, pointer to EST
First track of file
Current track of file
Current sector
Last buffer status interlock

166 SYSTEMS OPERATION

Processing
Flow

JOB PROCESSING 167

Processing
Flow

t IN 3 OUT

TAPE Equipment number, pointer to EST
Last block number
Last buffer status interlock

Equipment number, pointer to EST
Card count in record
End of job flag
Last buffer status interlock
Equipment number, pointer t o EST
Last buffer status interlock

CARD

PRINTER

The above tables provide very flexible system control over 1/0 opera-
tions since equipment can be allocated symbolically. An operation on a
named file is performed when the file name, location of central storage
buffers, and a code for the operation are specified. A PPU can look up the
name in the file name table FNT and the equipment number from the file
status table FST and perform the requested operation. When the operation
is complete, the number one is added to the operation code, which is initially
even, and entered into the last buffer status area of FST. This serves as an
interlock so that only one PPU at a time uses the file.

C. CIRCULAR BUFFER FOR 1/0

For transferring files between 1/0 and central storage, a PPU may call
for a circular buffer program labeled CIO. The user central program specifies
a file name and operation code, plus information about the circular buffer in
central storage; then CIO performs the operation.

Before the central program calls for CIO, five central storage words are
prepared as follows.

- Word iiemams

WORD 1 File Name Op-code Name
2 - FIRST Beginning address
3 - IN Current input address
4 - OUT Current output address
5 - LIMIT Last address -I- 1

The circular buffer and the buffer parameter area (above) must be
within the field length of the job, and addresses are relative to the job refer-
ence address RA.

A central program can then call on C10 by entering in its message area,
location RA + 1, the code CIO and a pointer to the buffer parameters.

System monitor detects this CPU message and fhds a free PPU to
perform the task, then clears RA + 1 to signal the CPU that the circular
buffer is begun.

The processing flow is shown for CIO in Figure 92.

Partially fliled buffers

FIRST

IN = OUT

LIMIT
empty buffer

FIRST

IN=OUT-1
OUT

LIMIT
full buffer

FIGURE 92 Circular buffer 1/0 (CIO) processing flow.

The circular buffer is used in either direction. The PPU may load the
buffer and the CPU empty it, or the CPU may load and the PPU empty it.
As far as the buffer is concerned, though, OUT defines the address for extrac-
tion of data from the buffer, and IN defines the address for entry of new data.
As data is extracted, OUT is stepped around the buffer but never beyond IN.

Since the buffer parameters are located within the job space, the central
program can step along with the PPU as long as the buffer is not exceeded
or as long as OUT never exceeds IN.

A job is made up of one or more CPU programs which are executed
with data files. Jobs are processed in three sequential, but independent,
stages:

Input
Execution
output

The multi-programming nature of the operating system allows many
jobs in the input or output stages of processing. Seven jobs may be in the
execution phase and are handled by control points. Figure 93 illustrates the
system elements in use in this “three phase” job processing.

The system reads an entire job from the card reader, using one of the
“pool” PPU’s and stores it as an input file on the system disk. Many jobs
may be entered in this manner to form an input queue. Typicdy, m inpllt,

168 SYSTEMS OPERATION CONTROL POINTS 169

CENTRAL
STORAGE F m DISK

DISK

- JOB 2 -

JOB 3
JOB 4

JOB 5

JOB 6

JOB 7 --
P P ~ COSD~+ CH 6 CARD I

READ-
PUNCH

w CLOCK

FIGURE 93

file is made up of three logical records; control cards, program cards, and data
C a r d s .

The system executes a job independently of the job input step, by
bringing the job to a controlpoint. Once in a control point, the job proceeds
by following the directives of the control cards (in the input file in disk stor-
age). During ~x~ci i f ion , the system z c e ~ z ~ d z t ~ ziitpiit data UII the system
disk.

When the system has completed or has processed the last control card
for a job, i t changes the file of accumulated output data to an output file. A
disposition, such as PRINT, PUNCH, etc., is assigned. Output files produced
in this manner make up an output queue.

E. SYSTEM MONITOR MTR

The operating system functions under the overall direction of the sys-
tem monitor program MTR, located in PPO. This program repeatedly scans
the communication linkages in the central resident area for requests for
monitor action from the CPU or from PPU's.

MTR is used in the assignment and release of all PPU's data channels,
disk storage, and other 1/0 equipment.

Communication between MTR and the PPU's is accomplished through
ten PPU communication areas in central storage. Each communication area
contains:

Word 0 -processor input,
* Word 1 -processor output, - Words 2-7-message buffer.

A PPU idles in its resident program as long as word 0 is cleared. MTR
enters a control word in word 0 of the selected PPU communication area in
order to call a transient PPU program to that PPU. The resident peripheral
program of the selected PPU senses the processor input entry in word 0,
locates the called program, and loads it into PPU storage.

After loading, the PPU resident program then jumps to the beginning
of the transient program. Following completion of the transient program,
word 0 is cleared.

A PPU may communicate a request to MTR by entering a value in its
word 1. A request too long for a single location is continued in the message
buffer. MTR repeatedly scans the communication area; when a message is
found, MTR jumps to a subroutine to process the request, then continues
scanning.

F. CONTROL POINTS

As many as seven jobs may be active in central storage at one time.
Each active job is assigned to a controlpoint area which contains all informa-
tion necessary to control the job and to resume operation after interrupt.

A job is brought to a control point by the system monitor MTR in order
to begin the execution phase. Each control point contains data as shown in
Figure 94 using 2GO iocizdj cenirai sioiuge addrsstli.

A number of conditions are possible for a job in a control point, such as:
See page 170.

A Active

X Waiting recall
B-G Waiting for execution

Blank No requirement for CPU

Conditions A through G represent a queue of central jobs with A in execution
and the rest waiting.

Condition X, waiting recall, arises by an explicit action of the job while
it is being executed in the CPU. This action communicates directly to the
monitor to temporarily relinquish control. This may be used, for example,
to buffer I/O. By examining a communication word in central storage, the
central program can determine the progress of input-output. If a point is
reached where further progress is temporarily impossible, the central pro-
gram may halt and activate the recall condition.

SUMMARY 17 1

“I, r- ?------ t-

FIGURE 94 Control point areas

(3

-1
a 1

i

/ =

LL

s
‘6

E
€5 - -

-

and exchange jump area.

L

i

(3

W

5
2
m

t-
z W

h
8
5

When a PPU has completed the 1/0 task or after a fixed time, the mon-
itor is alerted to recall the control point. The control point is converted from
X status and a search is made for control point priority to determine if the
control point should be entered into the stack.

Storage is allocated to jobs at control points so that the order is the same
as the control points themselves. Moves of storage are made after comple-
tion of a job only as needed to accommodate to the requested space of a new
job.

A PPU attached to a control point can request or release storage via the
monitor program MTR. This commonly takes place when a new job is
brought to the control point with a different requirement than the previous
job occupying that control point. The PPU specifies the space required, as
determined from the job control cards.

For the actual movement of storage, where needed, the CPU is called on
to perform a storage move program from the system library.

G. SUMMARY

There are, of course, many other interesting details of the Chippewa
Operating System and of the systems which evolved from it. The methods
used are intimately related to the structure and organization of the 6600
Computer. The short discussion in this chapter should give some insight
into the use of PPU’s for system control over input output. A single monitor
PPU with a number of “worker” PPU’s can perform with considerable flexi-
bility while maintaining simplicity and discipline.

A key hardware feature is the CPU Exchange Jump which provides
very rapid and simple interruption of one job and transfer to a new job. An-
other hardware feature, which affects and determines system strategy, is the

cer,tra; &o;-
age and extended core storage.

For brevity, no discussion was given here to assembly language or
higher level language, such as FORTRAN. This operating system is struc-
tured to facilitate such language usage as well as to perform on-line diagnostic
and maintenance programs.

It should also be obvious that many other considerations could be dis-
cussed. Some of these involve:

>ligh rztc =f trgnsfer .+;tkLL. stGr.&ge, &nd p&-ticd&-$

* Extended core storage.
Central Processor monitor. - Multiple systems.
Overlays and segmentation.

APPENDIX

6600 TIMING NOTES

1. The times given for the CPU are computational times-the time needed
after the execution start until the result is computed and stored in the
result register. Times are given in minor cycles (1 minor cycle = 100
nanoseconds).

2. A functional unit cannot be reused until one minor cycle after any exe-
cution. (Result is stored by Entry Control during the minor cycle after
release.)

3. A result register value may be used as an operand to another instruction
as soon as the result has been stored into the register (same minor cycle).
This result register will not be freed for use as a result register of another
instruction until one cycle after the result has been stored into that reg-
ister. (No trunk priority is considered.)

4. Instructions are issued to the functional units if:
a. The word containing the instruction is in the stack,
b. The functional unit(s) needed are free, and

If these conditions are not met, all further instruction issues are held
until they are satisfied. Each issued 15-bit instruction requires one
minor cycle before the next instruction is available for issue. Each
issued 30-bit instruction requires two minor cycles before the next in-
struction is available for issue.

5. Execution within a functional unit does not start until the operand(s)
are available. The two operands required are fetched from the registers
a t the same time (one operand is not loaded while the unit waits for the
second operand).

6. In instructions 02-07, where more than one functional unit is used, the
instruction is not issued until both functional units involved are free.

7. Times given for instructions 01-07 and 50-57 do not consider any mem-
ory conflict conditions. A practical average increase in time due to con-
fiict may be taken as under ten percent.

b. ,, Thc L I I b r , x y . l f LL."-Y rc&ctoviQ\ 'b~'"""',", m , p d D d -- qrp fro@ ^___.

174 APPENDIX APPENDIX 175

8. In instructions 50-57, if i = 1,2 . . . 5 (load from central storage instruc-
tions), the Xi register value is not available until 8 minor cycles after the
start of the instruction execution (assuming no memory conflicts).
When two load instructions begin execution one minor cycle apart, a t
least one extra minor cycle is required for execution of the later instruc-
tion. Therefore, the second executed instruction would require 9 cycles
for the load, 4 cycles for the increment unit result to the A register.

9. In instructions 50-57, if i = 6 or 7 (store to central storage instructions),
the XI register is not available for a result register until 8 minor cycles
after the instruction begins execution (assuming no memory conflicts).
When two store instructions begin execution one minor cycle apart, one
extra cycle is required for execution of the later instructions. Therefore,
the second executed instruction would require 9 cycles for the store, 4
cycles for the increment unit result to the A register. A store instruction
checks the X register before being issued. The X register is available as
an entry operand register while the store is taking place.

10. When executing sequential instructions that are not in the stack, the
minimum time is one word of instructions every 8 cycles. The time of
issue of the last parcel of an instruction word to the time of issue of the
first parcel of the next instruction word (while executing sequential in-
structions that are not in the stack) requires a minimum of 4 cycles. If
the last instruction in a word is a 30-bit instruction, a minimum of 5 cycles
is required from the time of issue of this instruction to the time of issue
of the first instruction of the next word.

11. All 03 branches made within the stack require 9 minor cycles. An 03
branch to the next sequential word is recognized as a branch within the
stack and requires 9 minor cycles.

12. wt,,.. - L..--L - .A - ~ J L .. llGil a ulallL1l uub ul t,llt: stack ;S taken, i5 minor cycies are normaiiy re-
quired for an 03ijk instruction and 14 minor cycles for other branch in-
structions (considering no memory conflicts), timed from the start of the
branch instruction execution to the availability of the branched-to word
instruction to a functional unit (instruction ready for issue).

13. Eleven cycles are required for the 03ijk instructions when the branch
is not taken (time from branch execution to issue of the next instruction)
if in the stack or if falling through to an instruction within the same word.
Out of stack fall-through to the next word takes 14 cycles.

14. Ten cycles are required for44ijk - O7ijk instructions when the branch is
not taken (time from branch execution to issue of the next instruction)
if in the stack or falling through to an instruction within the same word.
Out of stack fall-through to the next word takes 13 cycles.

15. Neither increment unit may be involved in a load operation if a store
operation is to be issued, and neither increment unit may be involved
in a store operation if a load operation is to be issued. The sequential
loading of instruction words does not affect the load/store conditions of
the increment units.

16. The operand registers are available to more than one functional unit in
the same minor cycles if the units are in different groups.

GROUP 1 GROUP 2 GROUP 3
Divide Add Increment 1

Shift Increment 2 Multiply 1
Long Add Multiply 2

Boolean

17. The time needed for a functional unit to operate on indefinite, out-of-
range or zero values is the same as for normal, in-range values (ie., no
gain or loss in execution time due to a unit recognizing an indefinite oper-
and and setting an indefinite result).

18. An index jump instruction (02) will always destroy the stack. If an un-
conditional jump backward in the stack is desired, an 0400k instruction
should be used (to save memory access time for instructions).

19. A return jump instruction (01) will always destroy the stack.

20. Functional unit times given on the end papers for CPU timing are meas-

21. Instruction times given on the end papers for PPU timing are measured

ured in minor cycles of 100-nanosecond duration each.

in major cycles of 1000-nanosecond duration each.

INDEX

A
Accept Bus, 48-49
adder entry: make up, 85-88
adder network, 85-88; output, 88
additive adder, 64, 93
additive merge tree, 90-91, 97-98
Add Unit, 77-88; adder network, 85-88;

double precision result, 81; execution
time, 77; exponent calculation,
82-84; instructions executed in, 77;
right shift network, 84-85; single
precision result, 81

air cooling, 4
alignment shift, 84. See also right shift

network
AND. 23-24

B
back panel wiring, 5
banks, 16; in Central Storage, 39
barrel, 141-143
basic circuit properties, 19-36; DCTL

(Direct-Coupled Transistor Logic)
logic circuits, 21-24; logic symbols,
24-28; packaging, 32-36; silicon tran-
sistors, 19-21; transmission lines,
28-31

block transfer, 54
Boolean functions, 60
Boolean unit, 59-63; execution time, 60;

bootstrap, 157
borrow, 64-66
borrow generation, 66-67; in Add Unit,

borrow pass, 66-67; in Add Unit, 83,86-88
Branch Unit, 111-114; instructions exe-

cuted in, 111-112; instruction stack,

83, 86-88

112; partner units, 112; Return
Jump, 113-114

buffer register: and instruction stack,
120, 121

building block approach, problems of, 5
busy flag, 128-130

C
cables, 32
carry. See borrow
carry-save network, 91,92; scheme, 93-97
Central Processor (CPU), 9-10, 11-13
Central Processor control, 117-140; Ex-

change Jump, 117-120; instruction
fetch, 120-123; instruction issue,
123-125; register entry/exit control,
134-136; Scoreboard, 125-134; sum-
mary, 137-140

Central Processor functional units,
57-116; Add Unit, 77-88; Boolean
Unit, 59-63; Branch Unit, 111-114;
Data Trunks, 69-71; Divide Unit,
101-105; ECS Coupler-Controller,
114-116; Fixed Add Unit, 63-69; In-
crement Units, 105-111; Multiply
Unit, 88-101; names of, 57-58; Shift
Unit, 71-77

Central Storage, 15-17; design considera-
tions, 15; properties, 16

Central Storage banks, 39
Central Storage: CPU references, 110-111
Central Storage cycle, 43-44
Central Storage: ECS (Extended Core

Storage) transfers, 114-116
Central Storage System, 37-56; ECS,

53-55; ECS Coupler-Controller,
55-56; general techniques, 37; inter-

178 INDEX INDEX 179

leaved storage, 44-47; storage bus
system, 51-53; storage module, 37-44;
Stunt Box, 47-51

Central Storage: read/write pyramids,
154

chassis, 34-36
chassis interconnection, 29
chassis: Central Storage, 38-39
Chippewa Laboratory, 163
Chippewa Operating System, 164
circuit packaging, 33
circular buffer program, 166-167
clear/set network: and flip-flop, 26, 27
clock oscillator, 32
coaxial transmission circuit, 29, 30
coaxial cable connections, 30-31
coefficient, 77-78
coincident current, 37, 39-40
complex module approach, 6
computer, motivation for, 1-4
computer: justification for large, 4
conflicts, 125-127
Control and Peripheral Processors, prop-

erties of, 10
control system, 7
Courant Institute, 3

D
data control, entry and exit, 134-135
data transfer, 14
Data Trunks, 69-71; priorities in, 71
DEAD START, 11, 154-157; program for,

designators, 127-128
destructive readout storage (DRO), 41,42
Direct-Coupled Transistor Logic circuit

(DCTL), 21-24; ground rules for use,
25

156-157

disk half-track, 160
disk sector, 159
disk storage, 5, 157-161; control by PPU,

disk track, 159
Divide Unit, 101-105; -execution time,

101; exponent calcula@on, 104-105;
instructions executed in;iOl; round-
ing in, 105

double precision: add, 81; multiply, 88-89

160- 161

E
end-around carry, 64
end-around borrow, 83-84, 104. See also

end-around carry
epitaxy, 20-21
error mode, 118
example programs, 137-140
Exchange Jump, 11, 116-120; and CPU,

118-119; effect in PPU, 118; effect on
ECS transfer, 116; execution time,
118; interrupt, 55; usefulness, 120

Exchange Jump interrupt, 55
exchange package, 118
exponent, 77-78; bias, 78
exponent calculation: in add, 82-84; in

divide, 104-105; in multiply, 98-99
Extended Core Storage (ECS), 17,18,53,

54; Coupler-Controller, 17-18, 114-
116; organization, 17-18; properties,
17; storage hierarchy, 53

ECS Coupler-Controller, 114-116; in-
structions executed in, 114; inter-
rupts, 116; timing, 115-116

ECS timing, 54-55
ECS word length, 54

F
fall-through, 125
fan-in. See loading
fan-out. See loading
Fernbach, S., 2-3
ferrite magnetic cores, 4, 37, 39
Fieid Length, 60, ii8; ECS, 53, 56
Fixed Add Unit, 63-69; block diagram,

67-68; instructions executed in, 68;
partner to Branch Unit, 68-69

fixed-point numbers, 78
flip-flop, 26-28
floating point numbers, 78
floating point: addition and subtraction.

See Add Unit; divide. See Divide
Unit; format, 77-78; multiply. See
Multiply Unit; nonstandard values,
78-79; normalize. See Shift Unit;
scaling instructions, 72, 77-78

Freon cooling, 5, 34-35
function translation, 122
functional parallelism, 1, 5, 6, 12, 57, 58

functional units, 6, 12-13
functional overlap, 7

G
germanium transistors, 4, 19

H
Harrison, M. C., 3-4
hopper, 48-50. See ako Stunt Box

I
inching, 121
increment addition, 11 1
increment functional units, instructions

for, 106
Increment Units, 105-111; addition in,

111; as partner to Branch Unit; in-
structions executed in, 106-110;
storage references, 110-111

indefinite value, 78-79; in multiply, 99
indexing operations, 105-106
infinite value, 78-79; in multiply, 99
input-output files, 165
input-output tables, 165
in-stack branches, 112-113
instruction fetch, 14, 112-113, 121
instruction flexibility, 7
instruction formats, 58-59; peripheral

processor, 143
instruction issue, 122; restrictions, 124
instructions: in Central Processor, 13
irisiruciiuir siack, is; and buffer register,

120-121; and time penalty, 123
instruction words, 112-113
interleaving in Central Storage, 5
interrupt (Exchange Jump), 114,118,120
inverter, 21-22

J
job processing, sequential stages of, 167
jump. See Branch Unit

L
large computers, 1-4
linear-select, 54
logic circuit, 5, 21; and truth tables, 23;

configuration of, 23; construction, 6;

design constraints, 28; diagram of, 24,
25

logical functions, 60
logical inversion (NOT), 22
loading, 25
look-behind, 123
loops, 13, 113

M
magnetic core storage, 37
magnetic cores, two-dimensional array of,

magnetic properties of ferrite core, 39-40
magnetic tape, 4
Major Cycle, 16
memory. See storage references.
micro instructions, 7
Minor cycle, 16, 31, 71
modules, 32-36
monitor state, 119
motor-alternator, 35
MTR (system monitor program): use in

multiple processors, 18
multiprocessing, 1; advantages of, 6;

conditions permitting, 10; theory

40,41

PPU’S, 168-169

nf fi

multiprogramming, 3, 5, 7-8
Multiply Unit, 88-101; carry-save net-

work, 93-97; execution time, 88; ex-
ponent calculation, 98-99; instruc-
tions executed in, 88; merge network,
97-98; methods, 89-92; rounding,
99-101; sequence of operations, 92-93

N
negative zero, 64
normalize, 71
normalize network, 75-77
normalized arithmetic, 89
normalization in addition, 81; in multi-

ply, 89, 99
NOT, 23-24
NPN transistor, 19-20

0
one’s complement, 63
OR, 23-24

180 INDEX INDEX 181

organization of 6600, 9-1
output file: on disk storage unit, 163
overflow, 78-79, 81; in multiply, 99

P
pack, 71
packaging, 5-6, 32-36
paging, 3
parallel addition, 63-66
parallel functional units, 9
parallel shift network, 73-75, 85
parcels: in instruction word, 121
partial product, 89-90
Peripheral and Control Processors: prop-

peripheral channels, 10-12
peripheral instructions: jumps, 143-144;

Central Processor, 148-149; Central
St orage, 149- 150; direct -indirect -in -
dex, 146-148; input/output, 150-152;
no address, 144-146

erties, 10

peripheral processors, 5, 7, 10-12
Peripheral Processor Units (PPU), 7, 9;

access to Central Storage, 149-150;
barrel design, 141-142; communica-
tion with, 11; data flow between,
150-152; effect of Exchange Jump,
118; instructions: direct address

mode, 146; index mode, 147; indi-
rect address mode, 147; jump, 143

processing requirements, 141; Read
pyramid, 154; Write pyramid, 154

PPU barrel, registers in, 152; register
operations of, 153

peripheral subsystem, 10-12, 141-161;
Dead Start, 154-157; peripheral
processors, 141-154

population count, 101, 105
PNP transistor, 20
pre-rounding, 101
primary storage, 45-46
priority network: Central Storage, 50-51
priority network. See Stunt Box
program address register, 13
protection, 53
pseudo-carry, 93
pseudo-sum, 93

R
read flag, 130-134
Read Pyramid: in PPU, 154
real-time clock, 152, 156
re-entrant code, 114
referencing Central Storage. See Stunt

registers, 59; in Central Processor, 13
relative address, 50; and ECS, 53, 56
release signal, 132, 134
relocation, 53
reservation control. See Scoreboard
reservations, 128-130
Return Jump instruction, 113-114
right shift network, method of, 84, 85
rounding, 76; in add, 84; in divide, 105;

Box

in multiply, 99-101

S
Schwartz, J. T., 3-4
Scoreboard, 14, 125-134; conflicts re-

solved by, 125; design, 125; opera-
tions of, 128-134

scratch pad, 7
secondary storage: in storage hierarchy,

44, 45
secondary storage unit, 157-159
segmentation, 3
serial adder, 64
shift, 71
shift apparatus: operation principle, 73
shift logic. 73-75
Shift Unit, 71-77; instructions executed

in, 71-72; number of modules in, 75
silicon, advantages of, 19
silicon planar transistor, 19-21
silicon transistors, 5, 6
6500 computer, 120
6600 organization, 9-18; Central Proces-

sor, 12-15; Central Storage, 15-17;
Extended Core Storage, 17-18; pe-
ripheral subsystem, 10-12

6636 disk, 157-161; characteristics of, 160;
control sequence for, 160-161

6638 Magnetic Disk Storage. See sec-
ondary storage unit

SKIP command, 124

slot time-sharing, 142-143, 152-154
storage address bus, 48, 51
storage hierarchy, 44-45
storage module, properties of, 37-38
storage, operation of, 39
storage protection, 16-17
storage references, 43, 44
storage bus system, 51-53
Stunt Box, 15,47-51; hopper, 48-49; pri-

ority network, 50; referencing Cen-
tral Storage, 52; storage bus system,
51-53; tag generator, 51

subtractive adder, 64
super-word. See sword
swapping, 17
switching time, 22, 25-26; Central Stor-

age, 40
sword, 54, 115
synchronous overlap, 47
synchronous storage, 47
system library, 171
system monitor program (MTR): use in

systems operation, 163-171; circular 1/0
buffer, 166-167; control points,
169-171; files, 163-164; job processor,
167-168; system monitor MTR,
168-169; tables, 165-166

PPU’S, 168-169

T
tag generator: Central Storage, 51. See

also Stunt Box

test points, 33-34
time penalty, in Central Storage, 123
time-sharing, 3
time slicing, 120
t h i n g in Central Storage, 50-51
timing for example programs, 137-140
transfer. See Branch unit
transmission lines, 28-31
transistor, 19-22, 32; characteristics of,

21, 22; current, 19; power, 19, 32;
temperature, 19, 32; voltage, 22

twisted pair connections, 28-30

U
underflow, 78-79, 81-82; in multiply, 99
Unit and Register Reservation Control.

unpack, 71

V
voltage levels, 22-23

W
wire lengths, 6
wiring: within modules, 28
Write Distributer, 52
Write pyramid: in PPU, 154
word, 115
Worlton, W. J., 2, 3

See Scoreboard

PERIPHERAL AND CONTROL PROCESSOR
INSTRUCTION EXECUTION TIMES

r-
OCTAL
CODE

00

01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24

34

40
41

NAME

Pass

Long lump to m + (d)
Return jump to m + (d)
Unconditional jump d
Zero jump d
Nonzero jump d
Plus jump d
Minus jump d

Shift d
Logical difference d
Logical product d
Selective clear d
Load d
Load complement d
Add d
Subtract d

Load dm
Add dm
Logical product dm
Logical difference drn
Pass
vass
Exchange jump
Read program address

Load (d)
Add (d)
Subtract (d)
Logical difference (d)
Store (d)
Replace add (d)
Replace add one (d)
Replace subtract one (d)

Load ((d))
Add Kd))

TIME
(MAJOR
CYCLES)

1

2-3
3-4
1
1
1
1
1

1
1
1
1
1
1
1
1

2
2
2
2
1
1
1
1

2
2
2
2
2
3
3
3

3
3

OCTAL
CODE

42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61

62
63

5n
65
66
67

70
71

72
73

74
75
76
77

(MAJOR
CYCLES)

Subtract ((d))
Logical difference ((d))
Store ((d))
Replace add ((d))
Replace add one ((d))
Replace subtract one ((d))

Load (m + (d))
Add (m + (d))
Subtract (m + (d))
Logical difference (rn + (d))
Store (m + (d))
Replace add (m + (d))
Replace add one (m + (d))
Replace subtract one (m + (d))

Central read from (A) to d
Central read (d) words

Central write to (A) from d
Central write (d) words

from (A) to m

to (A) from m
110-n In m rh-nnnl A nr+i*ir '"'..r . " . . , . I ".."....-. I "I..._

Jump to m if channel d inactive
Jump to m if channel d full
Jump to m if channel d empty

input to A from channel d
Input (A) words to m

from channel d
Output from A on channel d
Output (A) words from m

on channel d
Active channel d
Disconnect channel d
Function (A) on channel d

3
3
3
4
4
4

3-4
3-4
3-4
3-4
3-4
4-5
4-5
4-5

min 6

5 ,word
min 6

5 word

2
2
2

2
4 plus
1 word

2
4 plus
1 word

2
2
2
2

5 plus

5 plus

,, 1

. .
Function m on channel d 1

Beth.Wollar@pearson, 12:12 PM 4/26/02 , RE: permission to copy out of

Date: Fri, 26 Apr 2002 12:12:54 -0400
From: Beth.Wollar@pearsoned.com
Subject: RE: permission to copy out of print book
To: uban@ubanproductions.com
X-Mailer: Internet Mail Service, (5.5.2653.14)

April 26, 2002

Dear Mr. Uban:

Thank you f o r your email regarding DESIGN OF A COMPilTER by James E.
Thornton. Rights to this title have reveried to the author. Please contart
him for permissioii Co copy or scan the book. The latest address we have for
Mr. Thornton is

Sincerely,

Beth Wollar, Supervisor
Rights and Permissions
Pearson Education
1900 East Lake Ave.
Glenview, IL 60025

Original Message----- --_--
From: Tom Uban [mailto:uban@ubanproductions.com]
Sent: Wednesday, April 24, 2002 1:38 PM
To: Permissions, Gienview
Subject: permission to copy out of print book

Dear Mr. Ravas,

I am interested in obtaining permission to make copies of the following
book:

Title: Design Of A Computer: The Control Data 6600
Author: J. E. Thornton
Publisher: Scott Foresman
Year; 1970
Library of Congress Catalog Number: 74-96462

This book is of a technical nature, describing a computer design which
was produced in the late 1960s. It seems unlikely that it will ever be
published again, however there exists a small number of enthusiasts w h n
have an interest in the Control Data 6600 and what Mr. Thornton had to
write about it. Locating a copy of this book is difficult at best.

For this reason, I am asking for permission for one (or both) of the
following:

1. make a limited number of copies of the book
2. make an electronic scan of the book available to interested parties

There is no intent to profit from this request

Thank you for your time.

Tom Uban

Printed for Tom Uban <uban@ubanproductions.com> 1

2 May 2 0 0 2

Dear Mrs. Thornton,

I hope that my letters are not becoming an annoyance. I heard
back from the permissions department at Prentice Hall, with regarc
to the rights to copy the book. Here is what they had to say:

Dear Mr. Ubaii:

Thank you for your email regarhng DESlGN OF A COMPUTER by James E
Thornton. liiglits to thls title have reverted to the author. Please contact
hun for permission to copy or scan the book. Tlie latest address we have for
Mr. "liornton is

Sincerely,

Beth Wollar, Supervisor
Rights and Permissions
Pearson Education
1900 East Lake Ave.
Glenview, IL 60025

So, it would seem that I need to ask you for this permission.
Since there is a small group of people who are currently studying
the CDC 6600 machine and who would each be interested in locating
a 'copy of the book, I am requesting permission either to make a
limited number of copies of the book, or to make an electronic
scan of the hook availahle t n thnqp whn ;rye Fntero:t&.

Please be assured that there is no intent on.my part or the
part of others to profit from this request. It is solely for the
purpose of preserving and disseminating the information contained
therein.

With best regards,

Tom Uban

	cover
	coverInside
	0003
	0004
	0005
	0006
	0007
	001
	002
	004
	006
	008
	010
	012
	014
	016
	018
	020
	022
	024
	026
	028
	030
	032
	034
	036
	038
	040
	042
	044
	046
	048
	050
	052
	054
	056
	058
	060
	062
	064
	066
	068
	070
	072
	074
	076
	078
	080
	082
	084
	086
	088
	090
	092
	094
	096
	098
	100
	102
	104
	106
	108
	110
	112
	114
	116
	118
	120
	122
	124
	126
	128
	130
	132
	134
	136
	138
	140
	142
	144
	146
	148
	150
	152
	154
	156
	158
	160
	162
	164
	166
	168
	170
	172
	174
	176
	178
	180
	_backInside
	_permissionA
	_permissionB

